These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 37737953)

  • 1. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review.
    Białczyk A; Wełniak A; Kamińska B; Czajkowski R
    Mol Diagn Ther; 2023 Nov; 27(6):723-739. PubMed ID: 37737953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research progress of vitiligo repigmentation: from oxidative stress to autoimmunity.
    Yu T; Wu Y; Lu Z
    Cell Mol Biol (Noisy-le-grand); 2024 Apr; 70(4):147-151. PubMed ID: 38678613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?
    Xie H; Zhou F; Liu L; Zhu G; Li Q; Li C; Gao T
    J Dermatol Sci; 2016 Jan; 81(1):3-9. PubMed ID: 26387449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical appraisal of the oxidative stress pathway in vitiligo: a systematic review and meta-analysis.
    Speeckaert R; Dugardin J; Lambert J; Lapeere H; Verhaeghe E; Speeckaert MM; van Geel N
    J Eur Acad Dermatol Venereol; 2018 Jul; 32(7):1089-1098. PubMed ID: 29341310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications.
    Chang WL; Ko CH
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death.
    Xuan Y; Yang Y; Xiang L; Zhang C
    Oxid Med Cell Longev; 2022; 2022():8498472. PubMed ID: 35103096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitiligo: pathogenetic hypotheses and targets for current therapies.
    Guerra L; Dellambra E; Brescia S; Raskovic D
    Curr Drug Metab; 2010 Jun; 11(5):451-67. PubMed ID: 20540698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitexin protects melanocytes from oxidative stress via activating MAPK-Nrf2/ARE pathway.
    Li XS; Tang XY; Su W; Li X
    Immunopharmacol Immunotoxicol; 2020 Dec; 42(6):594-603. PubMed ID: 33045867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effects of glutamine on human melanocyte oxidative stress model.
    Jiang L; Guo Z; Kong Y; Liang J; Wang Y; Wang K
    Indian J Dermatol Venereol Leprol; 2018; 84(3):269-274. PubMed ID: 29491190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional nutrition as integrated approach in vitiligo management.
    Di Nardo V; Barygina V; França K; Tirant M; Valle Y; Lotti T
    Dermatol Ther; 2019 Jul; 32(4):e12625. PubMed ID: 30156053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Promising Role of Chemokines in Vitiligo: From Oxidative Stress to the Autoimmune Response.
    He S; Xu J; Wu J
    Oxid Med Cell Longev; 2022; 2022():8796735. PubMed ID: 35096274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of melanocyte death in vitiligo.
    Chen J; Li S; Li C
    Med Res Rev; 2021 Mar; 41(2):1138-1166. PubMed ID: 33200838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphenols targeting multiple molecular targets and pathways for the treatment of vitiligo.
    Yang Y; Du Y; Cui B
    Front Immunol; 2024; 15():1387329. PubMed ID: 39119340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity.
    Wang Y; Li S; Li C
    Med Sci Monit; 2019 Feb; 25():1017-1023. PubMed ID: 30723188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of aryl hydrocarbon receptor in vitiligo: a review.
    Li Y; Zeng Y; Chen Z; Tan X; Mei X; Wu Z
    Front Immunol; 2024; 15():1291556. PubMed ID: 38361944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ginkgo biloba extract protects human melanocytes from H
    Zhang S; Yi X; Su X; Jian Z; Cui T; Guo S; Gao T; Li C; Li S; Xiao Q
    J Cell Mol Med; 2019 Aug; 23(8):5193-5199. PubMed ID: 31148371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Antioxidants on Vitiligo and Melasma: A Scoping Review and Meta-Analysis.
    Speeckaert R; Bulat V; Speeckaert MM; van Geel N
    Antioxidants (Basel); 2023 Dec; 12(12):. PubMed ID: 38136202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone.
    Arowojolu OA; Orlow SJ; Elbuluk N; Manga P
    Exp Dermatol; 2017 Jul; 26(7):637-644. PubMed ID: 28370349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanocytes as instigators and victims of oxidative stress.
    Denat L; Kadekaro AL; Marrot L; Leachman SA; Abdel-Malek ZA
    J Invest Dermatol; 2014 Jun; 134(6):1512-1518. PubMed ID: 24573173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The involvement of Smac/DIABLO, p53, NF-kB, and MAPK pathways in apoptosis of keratinocytes from perilesional vitiligo skin: Protective effects of curcumin and capsaicin.
    Becatti M; Prignano F; Fiorillo C; Pescitelli L; Nassi P; Lotti T; Taddei N
    Antioxid Redox Signal; 2010 Nov; 13(9):1309-21. PubMed ID: 20085492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.