These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37738009)

  • 21. First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials.
    Mortazavi B; Silani M; Podryabinkin EV; Rabczuk T; Zhuang X; Shapeev AV
    Adv Mater; 2021 Sep; 33(35):e2102807. PubMed ID: 34296779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations.
    Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L
    ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Melting of cubic boron nitride at extreme pressures.
    de Koker N
    J Phys Condens Matter; 2012 Feb; 24(5):055401. PubMed ID: 22251624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melting slope of MgO from molecular dynamics and density functional theory.
    Tangney P; Scandolo S
    J Chem Phys; 2009 Sep; 131(12):124510. PubMed ID: 19791897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissociative melting of ice VII at high pressure.
    Goncharov AF; Sanloup C; Goldman N; Crowhurst JC; Bastea S; Howard WM; Fried LE; Guignot N; Mezouar M; Meng Y
    J Chem Phys; 2009 Mar; 130(12):124514. PubMed ID: 19334858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water.
    Sanchez-Burgos I; Muniz MC; Espinosa JR; Panagiotopoulos AZ
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A general-purpose machine learning Pt interatomic potential for an accurate description of bulk, surfaces, and nanoparticles.
    Kloppenburg J; Pártay LB; Jónsson H; Caro MA
    J Chem Phys; 2023 Apr; 158(13):134704. PubMed ID: 37031153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-phase simulation of the crystalline silicon melting line at pressures from -1 to 3 GPa.
    Dozhdikov VS; Basharin AY; Levashov PR
    J Chem Phys; 2012 Aug; 137(5):054502. PubMed ID: 22894359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melting temperatures of MgO under high pressure by micro-texture analysis.
    Kimura T; Ohfuji H; Nishi M; Irifune T
    Nat Commun; 2017 Jun; 8():15735. PubMed ID: 28580945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melting curve of SiO2 at multimegabar pressures: implications for gas giants and super-Earths.
    González-Cataldo F; Davis S; Gutiérrez G
    Sci Rep; 2016 May; 6():26537. PubMed ID: 27210813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the phase diagram of carbon.
    Ghiringhelli LM; Los JH; Meijer EJ; Fasolino A; Frenkel D
    Phys Rev Lett; 2005 Apr; 94(14):145701. PubMed ID: 15904077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Infrared absorption of MgO at high pressures and temperatures: a molecular dynamic study.
    Adebayo GA; Liang Y; Miranda CR; Scandolo S
    J Chem Phys; 2009 Jul; 131(1):014506. PubMed ID: 19586109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the melting of multicomponent systems: the case of MgSiO3 perovskite under lower mantle conditions.
    Di Paola C; P Brodholt J
    Sci Rep; 2016 Jul; 6():29830. PubMed ID: 27444854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicted reentrant melting of dense hydrogen at ultra-high pressures.
    Geng HY; Wu Q
    Sci Rep; 2016 Nov; 6():36745. PubMed ID: 27834405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melting and density of MgSiO
    Fei Y; Seagle CT; Townsend JP; McCoy CA; Boujibar A; Driscoll P; Shulenburger L; Furnish MD
    Nat Commun; 2021 Feb; 12(1):876. PubMed ID: 33563984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal conductivity of periclase (MgO) from first principles.
    Stackhouse S; Stixrude L; Karki BB
    Phys Rev Lett; 2010 May; 104(20):208501. PubMed ID: 20867074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical investigation of methane under pressure.
    Spanu L; Donadio D; Hohl D; Galli G
    J Chem Phys; 2009 Apr; 130(16):164520. PubMed ID: 19405607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnesium oxide at extreme temperatures and pressures studied with first-principles simulations.
    Soubiran F; González-Cataldo F; Driver KP; Zhang S; Militzer B
    J Chem Phys; 2019 Dec; 151(21):214104. PubMed ID: 31822088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab initio melting curve of copper by the phase coexistence approach.
    Vocadlo L; Alfè D; Price GD; Gillan MJ
    J Chem Phys; 2004 Feb; 120(6):2872-8. PubMed ID: 15268434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.