These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37738251)

  • 1. A novel Data and Model Centric artificial intelligence based approach in developing high-performance Named Entity Recognition for Bengali Language.
    Lima KA; Md Hasib K; Azam S; Karim A; Montaha S; Noori SRH; Jonkman M
    PLoS One; 2023; 18(9):e0287818. PubMed ID: 37738251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic quantitative stroke severity assessment based on Chinese clinical named entity recognition with domain-adaptive pre-trained large language model.
    Gu Z; He X; Yu P; Jia W; Yang X; Peng G; Hu P; Chen S; Chen H; Lin Y
    Artif Intell Med; 2024 Apr; 150():102822. PubMed ID: 38553162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terminologies augmented recurrent neural network model for clinical named entity recognition.
    Lerner I; Paris N; Tannier X
    J Biomed Inform; 2020 Feb; 102():103356. PubMed ID: 31837473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Named Entity Recognition and Normalization for Alzheimer's Disease Eligibility Criteria.
    Sun Z; Tao C
    Proc (IEEE Int Conf Healthc Inform); 2023 Jun; 2023():558-564. PubMed ID: 38283164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UMLS-based data augmentation for natural language processing of clinical research literature.
    Kang T; Perotte A; Tang Y; Ta C; Weng C
    J Am Med Inform Assoc; 2021 Mar; 28(4):812-823. PubMed ID: 33367705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A weakly supervised method for named entity recognition of Chinese electronic medical records.
    Li M; Gao C; Zhang K; Zhou H; Ying J
    Med Biol Eng Comput; 2023 Oct; 61(10):2733-2743. PubMed ID: 37453978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Named Entity Recognition Using Deep Learning Models.
    Wu Y; Jiang M; Xu J; Zhi D; Xu H
    AMIA Annu Symp Proc; 2017; 2017():1812-1819. PubMed ID: 29854252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction.
    Fabregat H; Duque A; Martinez-Romo J; Araujo L
    J Biomed Inform; 2023 Feb; 138():104279. PubMed ID: 36610608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on Chinese medical named entity recognition based on collaborative cooperation of multiple neural network models.
    Ji B; Li S; Yu J; Ma J; Tang J; Wu Q; Tan Y; Liu H; Ji Y
    J Biomed Inform; 2020 Apr; 104():103395. PubMed ID: 32109551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning with language models improves named entity recognition for PharmaCoNER.
    Sun C; Yang Z; Wang L; Zhang Y; Lin H; Wang J
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):602. PubMed ID: 34920700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive study of named entity recognition in Chinese clinical text.
    Lei J; Tang B; Lu X; Gao K; Jiang M; Xu H
    J Am Med Inform Assoc; 2014; 21(5):808-14. PubMed ID: 24347408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chinese medical entity recognition based on the dual-branch TENER model.
    Peng H; Zhang Z; Liu D; Qin X
    BMC Med Inform Decis Mak; 2023 Jul; 23(1):136. PubMed ID: 37488521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features.
    Tang B; Cao H; Wu Y; Jiang M; Xu H
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of clinical named entity recognition methods for Serbian electronic health records.
    Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A
    Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RT: a Retrieving and Chain-of-Thought framework for few-shot medical named entity recognition.
    Li M; Zhou H; Yang H; Zhang R
    J Am Med Inform Assoc; 2024 Sep; 31(9):1929-1938. PubMed ID: 38708849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved data augmentation approach and its application in medical named entity recognition.
    Chen H; Dan L; Lu Y; Chen M; Zhang J
    BMC Med Inform Decis Mak; 2024 Aug; 24(1):221. PubMed ID: 39103849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformers-sklearn: a toolkit for medical language understanding with transformer-based models.
    Yang F; Wang X; Ma H; Li J
    BMC Med Inform Decis Mak; 2021 Jul; 21(Suppl 2):90. PubMed ID: 34330244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Getting to Know Named Entity Recognition: Better Information Retrieval.
    Zhang B
    Med Ref Serv Q; 2024; 43(2):196-202. PubMed ID: 38722609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.