These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37738354)

  • 1. Contrasting effects of bioenergy crops on biodiversity.
    Haan NL; Benucci GNM; Fiser CM; Bonito G; Landis DA
    Sci Adv; 2023 Sep; 9(38):eadh7960. PubMed ID: 37738354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes.
    Werling BP; Dickson TL; Isaacs R; Gaines H; Gratton C; Gross KL; Liere H; Malmstrom CM; Meehan TD; Ruan L; Robertson BA; Robertson GP; Schmidt TM; Schrotenboer AC; Teal TK; Wilson JK; Landis DA
    Proc Natl Acad Sci U S A; 2014 Jan; 111(4):1652-7. PubMed ID: 24474791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pest-suppression potential of midwestern landscapes under contrasting bioenergy scenarios.
    Meehan TD; Werling BP; Landis DA; Gratton C
    PLoS One; 2012; 7(7):e41728. PubMed ID: 22848582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bird communities in future bioenergy landscapes of the Upper Midwest.
    Meehan TD; Hurlbert AH; Gratton C
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18533-8. PubMed ID: 20921398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bioenergy on biodiversity arising from land-use change and crop type.
    Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ
    Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micrometeorological measurements over 3 years reveal differences in N2 O emissions between annual and perennial crops.
    Abalos D; Brown SE; Vanderzaag AC; Gordon RJ; Dunfield KE; Wagner-Riddle C
    Glob Chang Biol; 2016 Mar; 22(3):1244-55. PubMed ID: 26491961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling pollinator community response to contrasting bioenergy scenarios.
    Bennett AB; Meehan TD; Gratton C; Isaacs R
    PLoS One; 2014; 9(11):e110676. PubMed ID: 25365559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moth diversity in three biofuel crops and native prairie in Illinois.
    Harrison T; Berenbaum MR
    Insect Sci; 2013 Jun; 20(3):407-19. PubMed ID: 23955892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crop and landscape heterogeneity increase biodiversity in agricultural landscapes: A global review and meta-analysis.
    Priyadarshana TS; Martin EA; Sirami C; Woodcock BA; Goodale E; Martínez-Núñez C; Lee MB; Pagani-Núñez E; Raderschall CA; Brotons L; Rege A; Ouin A; Tscharntke T; Slade EM
    Ecol Lett; 2024 Mar; 27(3):e14412. PubMed ID: 38549269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid transgenerational adaptation in response to intercropping reduces competition.
    Stefan L; Engbersen N; Schöb C
    Elife; 2022 Sep; 11():. PubMed ID: 36097813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region.
    Ramirez-Contreras NE; Fontanilla-Díaz CA; Pardo LE; Delgado T; Munar-Florez D; Wicke B; Ruíz-Delgado J; van der Hilst F; Garcia-Nuñez JA; Mosquera-Montoya M; Faaij APC
    J Environ Manage; 2022 Feb; 303():114137. PubMed ID: 34847366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA.
    Gelfand I; Shcherbak I; Millar N; Kravchenko AN; Robertson GP
    Glob Chang Biol; 2016 Nov; 22(11):3594-3607. PubMed ID: 27510313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop rotations for increased soil carbon: perenniality as a guiding principle.
    King AE; Blesh J
    Ecol Appl; 2018 Jan; 28(1):249-261. PubMed ID: 29112790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production.
    Yang J; Udvardi M
    J Exp Bot; 2018 Feb; 69(4):855-865. PubMed ID: 29444307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bird communities and biomass yields in potential bioenergy grasslands.
    Blank PJ; Sample DW; Williams CL; Turner MG
    PLoS One; 2014; 9(10):e109989. PubMed ID: 25299593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.
    Robertson GP; Hamilton SK; Del Grosso SJ; Parton WJ
    Ecol Appl; 2011 Jun; 21(4):1055-67. PubMed ID: 21774413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiversity-based cropping systems: A long-term perspective is necessary.
    Carof M; Godinot O; Le Cadre E
    Sci Total Environ; 2022 Sep; 838(Pt 1):156022. PubMed ID: 35588807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monocultural sowing in mesocosms decreases the species richness of weeds and invertebrates and critically reduces the fitness of the endangered European hamster.
    Tissier ML; Kletty F; Handrich Y; Habold C
    Oecologia; 2018 Feb; 186(2):589-599. PubMed ID: 29209843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.