These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37738354)

  • 41. The role of landscape composition and heterogeneity on the taxonomical and functional diversity of Mediterranean plant communities in agricultural landscapes.
    Cursach J; Rita J; Gómez-Martínez C; Cardona C; Capó M; Lázaro A
    PLoS One; 2020; 15(9):e0238222. PubMed ID: 32936803
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Useful insights from evolutionary biology for developing perennial grain crops.
    DeHaan LR; Van Tassel DL
    Am J Bot; 2014 Oct; 101(10):1801-19. PubMed ID: 25326622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perennial Grain and Oilseed Crops.
    Kantar MB; Tyl CE; Dorn KM; Zhang X; Jungers JM; Kaser JM; Schendel RR; Eckberg JO; Runck BC; Bunzel M; Jordan NR; Stupar RM; Marks MD; Anderson JA; Johnson GA; Sheaffer CC; Schoenfuss TC; Ismail B; Heimpel GE; Wyse DL
    Annu Rev Plant Biol; 2016 Apr; 67():703-29. PubMed ID: 26789233
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wild insect diversity increases inter-annual stability in global crop pollinator communities.
    Senapathi D; Fründ J; Albrecht M; Garratt MPD; Kleijn D; Pickles BJ; Potts SG; An J; Andersson GKS; Bänsch S; Basu P; Benjamin F; Bezerra ADM; Bhattacharya R; Biesmeijer JC; Blaauw B; Blitzer EJ; Brittain CA; Carvalheiro LG; Cariveau DP; Chakraborty P; Chatterjee A; Chatterjee S; Cusser S; Danforth BN; Degani E; Freitas BM; Garibaldi LA; Geslin B; de Groot GA; Harrison T; Howlett B; Isaacs R; Jha S; Klatt BK; Krewenka K; Leigh S; Lindström SAM; Mandelik Y; McKerchar M; Park M; Pisanty G; Rader R; Reemer M; Rundlöf M; Smith B; Smith HG; Silva PN; Steffan-Dewenter I; Tscharntke T; Webber S; Westbury DB; Westphal C; Wickens JB; Wickens VJ; Winfree R; Zhang H; Klein AM
    Proc Biol Sci; 2021 Mar; 288(1947):20210212. PubMed ID: 33726596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems.
    Duran BE; Duncan DS; Oates LG; Kucharik CJ; Jackson RD
    PLoS One; 2016; 11(3):e0151919. PubMed ID: 26991790
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biodiversity and agro-ecology in field margins.
    De Cauwer B; Reheul D; Nijs I; Milbau A
    Commun Agric Appl Biol Sci; 2005; 70(1):17-49. PubMed ID: 16363358
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Soil Origin and Plant Genotype Modulate Switchgrass Aboveground Productivity and Root Microbiome Assembly.
    Beschoren da Costa P; Benucci GMN; Chou MY; Van Wyk J; Chretien M; Bonito G
    mBio; 2022 Apr; 13(2):e0007922. PubMed ID: 35384699
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.
    Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W
    J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methods to Identify Soil Microbial Bioindicators of Sustainable Management of Bioenergy Crops.
    Navarrete AA; de Cássia Bonassi R; Américo-Pinheiro JHP; Vazquez GH; Mendes LW; de Souza Loureiro E; Kuramae EE; Tsai SM
    Methods Mol Biol; 2021; 2232():251-263. PubMed ID: 33161552
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes.
    Nascimbene J; Marini L; Paoletti MG
    Environ Manage; 2012 May; 49(5):1054-60. PubMed ID: 22411057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union.
    Di Fulvio F; Forsell N; Korosuo A; Obersteiner M; Hellweg S
    Sci Total Environ; 2019 Feb; 651(Pt 1):1505-1516. PubMed ID: 30360280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hedgerows increase the diversity and modify the composition of arbuscular mycorrhizal fungi in Mediterranean agricultural landscapes.
    González Fradejas G; García de León D; Vasar M; Koorem K; Zobel M; Öpik M; Moora M; Rey Benayas JM
    Mycorrhiza; 2022 Nov; 32(5-6):397-407. PubMed ID: 36087125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 7: Effects of weed management strategy (grower practices versus academic recommendations) on the weed soil seedbank over 6 years.
    Gibson DJ; Young BG; Owen MD; Gage KL; Matthews JL; Jordan DL; Shaw DR; Weller SC; Wilson RG
    Pest Manag Sci; 2016 Apr; 72(4):692-700. PubMed ID: 25974869
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.
    Colbach N; Darmency H; Fernier A; Granger S; Le Corre V; Messéan A
    Environ Sci Pollut Res Int; 2017 May; 24(14):13121-13135. PubMed ID: 28386883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest.
    Meehan TD; Gratton C; Diehl E; Hunt ND; Mooney DF; Ventura SJ; Barham BL; Jackson RD
    PLoS One; 2013; 8(11):e80093. PubMed ID: 24223215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.
    Ishaq SL; Johnson SP; Miller ZJ; Lehnhoff EA; Olivo S; Yeoman CJ; Menalled FD
    Microb Ecol; 2017 Feb; 73(2):417-434. PubMed ID: 27677892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioenergy crop production and carbon sequestration potential under changing climate and land use: A case study in the upper River Taw catchment in southwest England.
    Dixit PN; Richter GM; Coleman K; Collins AL
    Sci Total Environ; 2023 Nov; 900():166390. PubMed ID: 37597557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.
    Smith HG; Dänhardt J; Lindström A; Rundlöf M
    Oecologia; 2010 Apr; 162(4):1071-9. PubMed ID: 20213151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Global-scale drivers of crop visitor diversity and the historical development of agriculture.
    Brown J; Cunningham SA
    Proc Biol Sci; 2019 Nov; 286(1915):20192096. PubMed ID: 31744437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.