BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37738403)

  • 1. PhenoDriver: interpretable framework for studying personalized phenotype-associated driver genes in breast cancer.
    Li Y; Zhang SW; Xie MY; Zhang T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37738403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring gene-patient association to identify personalized cancer driver genes by linear neighborhood propagation.
    Huang Y; Chen F; Sun H; Zhong C
    BMC Bioinformatics; 2024 Jan; 25(1):34. PubMed ID: 38254011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A workflow to study mechanistic indicators for driver gene prediction with Moonlight.
    Nourbakhsh M; Saksager A; Tom N; Chen XS; Colaprico A; Olsen C; Tiberti M; Papaleo E
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37551622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients.
    Guo WF; Zhang SW; Feng YH; Liang J; Zeng T; Chen L
    Nucleic Acids Res; 2021 Apr; 49(7):e37. PubMed ID: 33434272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpreting pathways to discover cancer driver genes with Moonlight.
    Colaprico A; Olsen C; Bailey MH; Odom GJ; Terkelsen T; Silva TC; Olsen AV; Cantini L; Zinovyev A; Barillot E; Noushmehr H; Bertoli G; Castiglioni I; Cava C; Bontempi G; Chen XS; Papaleo E
    Nat Commun; 2020 Jan; 11(1):69. PubMed ID: 31900418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes.
    Sudhakar M; Rengaswamy R; Raman K
    Front Genet; 2022; 13():854190. PubMed ID: 35620468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pan-cancer onco-signatures reveal a novel mitochondrial subtype of luminal breast cancer with specific regulators.
    Simeone I; Ceccarelli M
    J Transl Med; 2023 Jan; 21(1):55. PubMed ID: 36717859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. InDEP: an interpretable machine learning approach to predict cancer driver genes from multi-omics data.
    Yang H; Liu Y; Yang Y; Li D; Wang Z
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37649392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing clonality and subclonality of driver genes for clinical survival benefits in breast cancer.
    Lan Y; Zhao E; Luo S; Xiao Y; Li X; Cheng S
    Breast Cancer Res Treat; 2019 May; 175(1):91-104. PubMed ID: 30739230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A network-based method for identifying cancer driver genes based on node control centrality.
    Li F; Li H; Shang J; Liu JX; Dai L; Liu X; Li Y
    Exp Biol Med (Maywood); 2023 Feb; 248(3):232-241. PubMed ID: 36573462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method.
    Taheri G; Habibi M
    Comput Biol Med; 2024 Mar; 171():108234. PubMed ID: 38430742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of driver genes with tumor suppressive and oncogenic roles in gastric cancer.
    Wang T; Liu Y; Zhao M
    PeerJ; 2017; 5():e3585. PubMed ID: 28729958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mutational landscape of a US Midwestern breast cancer cohort reveals subtype-specific cancer drivers and prognostic markers.
    Vellichirammal NN; Tan YD; Xiao P; Eudy J; Shats O; Kelly D; Desler M; Cowan K; Guda C
    Hum Genomics; 2023 Jul; 17(1):64. PubMed ID: 37454130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method.
    Amgalan B; Lee H
    Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying cancer type specific oncogenes and tumor suppressors using limited size data.
    Pavel AB; Vasile CI
    J Bioinform Comput Biol; 2016 Dec; 14(6):1650031. PubMed ID: 27712196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD
    PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.