These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1307 related articles for article (PubMed ID: 37738468)

  • 41. FDB-Net: Fusion double branch network combining CNN and transformer for medical image segmentation.
    Jiang Z; Wu Y; Huang L; Gu M
    J Xray Sci Technol; 2024; 32(4):931-951. PubMed ID: 38848160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automatic segmentation of the pharyngeal airway space with convolutional neural network.
    Shujaat S; Jazil O; Willems H; Van Gerven A; Shaheen E; Politis C; Jacobs R
    J Dent; 2021 Aug; 111():103705. PubMed ID: 34077802
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MS-TCNet: An effective Transformer-CNN combined network using multi-scale feature learning for 3D medical image segmentation.
    Ao Y; Shi W; Ji B; Miao Y; He W; Jiang Z
    Comput Biol Med; 2024 Mar; 170():108057. PubMed ID: 38301516
    [TBL] [Abstract][Full Text] [Related]  

  • 44. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images.
    Kushnure DT; Talbar SN
    Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic segmentation of lung tumors on CT images based on a 2D & 3D hybrid convolutional neural network.
    Gan W; Wang H; Gu H; Duan Y; Shao Y; Chen H; Feng A; Huang Y; Fu X; Ying Y; Quan H; Xu Z
    Br J Radiol; 2021 Oct; 94(1126):20210038. PubMed ID: 34347535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hepatic vessel segmentation based on 3D swin-transformer with inductive biased multi-head self-attention.
    Wu M; Qian Y; Liao X; Wang Q; Heng PA
    BMC Med Imaging; 2023 Jul; 23(1):91. PubMed ID: 37422639
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic segmentation and applicator reconstruction for CT-based brachytherapy of cervical cancer using 3D convolutional neural networks.
    Zhang D; Yang Z; Jiang S; Zhou Z; Meng M; Wang W
    J Appl Clin Med Phys; 2020 Oct; 21(10):158-169. PubMed ID: 32991783
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MANet: a multi-attention network for automatic liver tumor segmentation in computed tomography (CT) imaging.
    Hettihewa K; Kobchaisawat T; Tanpowpong N; Chalidabhongse TH
    Sci Rep; 2023 Nov; 13(1):20098. PubMed ID: 37973987
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasound image segmentation based on Transformer and U-Net with joint loss.
    Cai L; Li Q; Zhang J; Zhang Z; Yang R; Zhang L
    PeerJ Comput Sci; 2023; 9():e1638. PubMed ID: 38077559
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A distance map regularized CNN for cardiac cine MR image segmentation.
    Dangi S; Linte CA; Yaniv Z
    Med Phys; 2019 Dec; 46(12):5637-5651. PubMed ID: 31598971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer.
    Jiang Y; Zhang Y; Lin X; Dong J; Cheng T; Liang J
    Brain Sci; 2022 Jun; 12(6):. PubMed ID: 35741682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level.
    Chen Y; Fan S; Chen Y; Che C; Cao X; He X; Song X; Zhao F
    Med Phys; 2021 Jul; 48(7):3804-3814. PubMed ID: 33969487
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic segmentation of high-risk clinical target volume for tandem-and-ovoids brachytherapy patients using an asymmetric dual-path convolutional neural network.
    Cao Y; Vassantachart A; Ragab O; Bian S; Mitra P; Xu Z; Gallogly AZ; Cui J; Shen ZL; Balik S; Gribble M; Chang EL; Fan Z; Yang W
    Med Phys; 2022 Mar; 49(3):1712-1722. PubMed ID: 35080018
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing skin lesion segmentation with a fusion of convolutional neural networks and transformer models.
    Xu Z; Guo X; Wang J
    Heliyon; 2024 May; 10(10):e31395. PubMed ID: 38807881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 58. O-Net: A Novel Framework With Deep Fusion of CNN and Transformer for Simultaneous Segmentation and Classification.
    Wang T; Lan J; Han Z; Hu Z; Huang Y; Deng Y; Zhang H; Wang J; Chen M; Jiang H; Lee RG; Gao Q; Du M; Tong T; Chen G
    Front Neurosci; 2022; 16():876065. PubMed ID: 35720715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MultiIB-TransUNet: Transformer with multiple information bottleneck blocks for CT and ultrasound image segmentation.
    Li G; Jin D; Yu Q; Zheng Y; Qi M
    Med Phys; 2024 Feb; 51(2):1178-1189. PubMed ID: 37528654
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 66.