BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37738672)

  • 21. Semiparametric competing risks regression under interval censoring using the R package intccr.
    Park J; Bakoyannis G; Yiannoutsos CT
    Comput Methods Programs Biomed; 2019 May; 173():167-176. PubMed ID: 31046992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation shows undesirable results for competing risks analysis with time-dependent covariates for clinical outcomes.
    Poguntke I; Schumacher M; Beyersmann J; Wolkewitz M
    BMC Med Res Methodol; 2018 Jul; 18(1):79. PubMed ID: 30012114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methods of competing risks flexible parametric modeling for estimation of the risk of the first disease among HIV infected men.
    Nouri S; Mahmoudi M; Mohammad K; Mansournia MA; Yaseri M; Akhtar-Danesh N
    BMC Med Res Methodol; 2020 Jan; 20(1):17. PubMed ID: 31996148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utility of Restricted Mean Survival Time Analysis for Heart Failure Clinical Trial Evaluation and Interpretation.
    Perego C; Sbolli M; Specchia C; Fiuzat M; McCaw ZR; Metra M; Oriecuia C; Peveri G; Wei LJ; O'Connor CM; Psotka MA
    JACC Heart Fail; 2020 Dec; 8(12):973-983. PubMed ID: 33039446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Doubly-robust estimator of the difference in restricted mean times lost with competing risks data.
    Lin J; Trinquart L
    Stat Methods Med Res; 2022 Oct; 31(10):1881-1903. PubMed ID: 35607287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction accuracy and variable selection for penalized cause-specific hazards models.
    Saadati M; Beyersmann J; Kopp-Schneider A; Benner A
    Biom J; 2018 Mar; 60(2):288-306. PubMed ID: 28762523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Association of pathogen-specific clinical mastitis in the first 100 days of first lactation with productive lifetime: An observational study comparing competing risks models for death and sale with the Cox model.
    Hertl JA; Schukken YH; Tauer LW; Welcome FL; Gröhn YT
    Prev Vet Med; 2023 Apr; 213():105879. PubMed ID: 36841041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linear and nonlinear variable selection in competing risks data.
    Ren X; Li S; Shen C; Yu Z
    Stat Med; 2018 Jun; 37(13):2134-2147. PubMed ID: 29579776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring.
    Geskus RB
    Biometrics; 2011 Mar; 67(1):39-49. PubMed ID: 20377575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vertical modelling: Analysis of competing risks data with missing causes of failure.
    Nicolaie MA; van Houwelingen HC; Putter H
    Stat Methods Med Res; 2015 Dec; 24(6):891-908. PubMed ID: 22179822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methods of competing risks analysis of end-stage renal disease and mortality among people with diabetes.
    Lim HJ; Zhang X; Dyck R; Osgood N
    BMC Med Res Methodol; 2010 Oct; 10():97. PubMed ID: 20964855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Planning and analyzing clinical trials with competing risks: Recommendations for choosing appropriate statistical methodology.
    Poythress JC; Lee MY; Young J
    Pharm Stat; 2020 Jan; 19(1):4-21. PubMed ID: 31625290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competing time-to-event endpoints in cardiology trials: a simulation study to illustrate the importance of an adequate statistical analysis.
    Rauch G; Kieser M; Ulrich S; Doherty P; Rauch B; Schneider S; Riemer T; Senges J
    Eur J Prev Cardiol; 2014 Jan; 21(1):74-80. PubMed ID: 22964966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tree-based models for survival data with competing risks.
    Kretowska M
    Comput Methods Programs Biomed; 2018 Jun; 159():185-198. PubMed ID: 29650312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sample size determination for jointly testing a cause-specific hazard and the all-cause hazard in the presence of competing risks.
    Yang Q; Fung WK; Li G
    Stat Med; 2018 Apr; 37(8):1389-1401. PubMed ID: 29282764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sample size calculations in the presence of competing risks.
    Latouche A; Porcher R
    Stat Med; 2007 Dec; 26(30):5370-80. PubMed ID: 17955563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of the Absolute Risk of Cardiovascular Disease and Other Events: Issues With the Use of Multiple Fine-Gray Subdistribution Hazard Models.
    Austin PC; Putter H; Lee DS; Steyerberg EW
    Circ Cardiovasc Qual Outcomes; 2022 Feb; 15(2):e008368. PubMed ID: 35098725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new measure of treatment effect in clinical trials involving competing risks based on generalized pairwise comparisons.
    Cantagallo E; De Backer M; Kicinski M; Ozenne B; Collette L; Legrand C; Buyse M; Péron J
    Biom J; 2021 Feb; 63(2):272-288. PubMed ID: 32939818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the relation between the cause-specific hazard and the subdistribution rate for competing risks data: The Fine-Gray model revisited.
    Putter H; Schumacher M; van Houwelingen HC
    Biom J; 2020 May; 62(3):790-807. PubMed ID: 32128860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Misspecified regression model for the subdistribution hazard of a competing risk.
    Latouche A; Boisson V; Chevret S; Porcher R
    Stat Med; 2007 Feb; 26(5):965-74. PubMed ID: 16755533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.