BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37738860)

  • 1. A voltammetric study of nitrogenase MoFe-protein using low-potential electron transfer mediators.
    Badalyan A; Yang ZY; Seefeldt LC
    Bioelectrochemistry; 2024 Feb; 155():108575. PubMed ID: 37738860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein.
    Seefeldt LC
    Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for Functionally Relevant Encounter Complexes in Nitrogenase Catalysis.
    Owens CP; Katz FE; Carter CH; Luca MA; Tezcan FA
    J Am Chem Soc; 2015 Oct; 137(39):12704-12. PubMed ID: 26360912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP- and iron-protein-independent activation of nitrogenase catalysis by light.
    Roth LE; Nguyen JC; Tezcan FA
    J Am Chem Soc; 2010 Oct; 132(39):13672-4. PubMed ID: 20843032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformationally Gated Electron Transfer in Nitrogenase. Isolation, Purification, and Characterization of Nitrogenase From Gluconacetobacter diazotrophicus.
    Owens CP; Tezcan FA
    Methods Enzymol; 2018; 599():355-386. PubMed ID: 29746246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of the P
    Keable SM; Zadvornyy OA; Johnson LE; Ginovska B; Rasmussen AJ; Danyal K; Eilers BJ; Prussia GA; LeVan AX; Raugei S; Seefeldt LC; Peters JW
    J Biol Chem; 2018 Jun; 293(25):9629-9635. PubMed ID: 29720402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii.
    Duyvis MG; Wassink H; Haaker H
    Eur J Biochem; 1994 Nov; 225(3):881-90. PubMed ID: 7957225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP.
    Lanzilotta WN; Parker VD; Seefeldt LC
    Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39.
    Lanzilotta WN; Fisher K; Seefeldt LC
    J Biol Chem; 1997 Feb; 272(7):4157-65. PubMed ID: 9020128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Transduction in Nitrogenase.
    Seefeldt LC; Hoffman BM; Peters JW; Raugei S; Beratan DN; Antony E; Dean DR
    Acc Chem Res; 2018 Sep; 51(9):2179-2186. PubMed ID: 30095253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine-Coordinated P-Cluster in G. diazotrophicus Nitrogenase: Evidence for the Importance of O-Based Ligands in Conformationally Gated Electron Transfer.
    Owens CP; Katz FE; Carter CH; Oswald VF; Tezcan FA
    J Am Chem Soc; 2016 Aug; 138(32):10124-7. PubMed ID: 27487256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical experiments define potentials associated with binding of substrates and inhibitors to nitrogenase MoFe protein.
    Chen T; Ash PA; Seefeldt LC; Vincent KA
    Faraday Discuss; 2023 Jul; 243(0):270-286. PubMed ID: 37060162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle.
    Yang ZY; Ledbetter R; Shaw S; Pence N; Tokmina-Lukaszewska M; Eilers B; Guo Q; Pokhrel N; Cash VL; Dean DR; Antony E; Bothner B; Peters JW; Seefeldt LC
    Biochemistry; 2016 Jul; 55(26):3625-35. PubMed ID: 27295169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex.
    Chan JM; Ryle MJ; Seefeldt LC
    J Biol Chem; 1999 Jun; 274(25):17593-8. PubMed ID: 10364195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic CO
    Hu B; Harris DF; Dean DR; Liu TL; Yang ZY; Seefeldt LC
    Bioelectrochemistry; 2018 Apr; 120():104-109. PubMed ID: 29223886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein.
    Angove HC; Yoo SJ; Münck E; Burgess BK
    J Biol Chem; 1998 Oct; 273(41):26330-7. PubMed ID: 9756863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.