These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37738939)

  • 21. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the chemical oxidation demand to sulfide ratio on sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater.
    Zhang L; Mao Y; Ma J; Li D; Shi H; Liu Y; Cai L
    Environ Technol; 2013; 34(1-4):269-74. PubMed ID: 23530340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recovery of bio‑sulfur and metal resources from mine wastewater by sulfide biological oxidation-alkali flocculation: A pilot-scale study.
    Hu X; Yang H; Fang X; Shi T; Tan K
    Sci Total Environ; 2023 Jun; 876():162546. PubMed ID: 36870505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enrichment of sulfur-oxidizing bacteria using S-doped NiFe
    Li J; Yao C; Song B; Zhang Z; Brock AL; Trapp S; Zhang J
    Sci Total Environ; 2022 Oct; 844():156973. PubMed ID: 35772559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of sulfur selection and sulfur secretion in a biological sulfide removal (BISURE) system.
    Li W; Zhang M; Kang D; Chen W; Yu T; Xu D; Zeng Z; Li Y; Zheng P
    Environ Int; 2020 Apr; 137():105549. PubMed ID: 32086075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfacial Engineered Polyaniline/Sulfur-Doped TiO
    Li C; Wang Z; Li S; Cheng J; Zhang Y; Zhou J; Yang D; Tong DG; Wang B
    ACS Appl Mater Interfaces; 2018 May; 10(21):18390-18399. PubMed ID: 29727153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis.
    Wang X; Zhang Y; Zhang T; Zhou J
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2895-905. PubMed ID: 26603764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell.
    Ni G; Harnawan P; Seidel L; Ter Heijne A; Sleutels T; Buisman CJN; Dopson M
    J Hazard Mater; 2019 Feb; 363():197-204. PubMed ID: 30308358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical treatment of industrial sulfidic spent caustic streams for sulfide removal and caustic recovery.
    Ntagia E; Fiset E; Truong Cong Hong L; Vaiopoulou E; Rabaey K
    J Hazard Mater; 2020 Apr; 388():121770. PubMed ID: 31836376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.
    Ramana GV; Kumar PS; Srikanth VV; Padya B; Jain PK
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1338-43. PubMed ID: 26353652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-voltage electrochemical treatment to precipitate sulfide during anaerobic digestion of beet sugar wastewater.
    Wang Y; Lin H; Ding L; Hu B
    Sci Total Environ; 2020 Dec; 747():141243. PubMed ID: 32791410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A promising electrode material modified by Nb-doped TiO
    Xu L; Liang G; Yin M
    Chemosphere; 2017 Apr; 173():425-434. PubMed ID: 28129621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic Ozonation of Ibuprofen in Aqueous Media over Polyaniline-Derived Nitrogen Containing Carbon Nanostructures.
    Nica AV; Olaru EA; Bradu C; Dumitru A; Avramescu SM
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. H2S(g) removal using a modified, low-ph liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple.
    Gendel Y; Levi N; Lahav O
    Environ Sci Technol; 2009 Nov; 43(21):8315-9. PubMed ID: 19924962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacteria as an Electron Shuttle for Sulfide Oxidation.
    Ter Heijne A; de Rink R; Liu D; Klok JBM; Buisman CJN
    Environ Sci Technol Lett; 2018 Aug; 5(8):495-499. PubMed ID: 30135862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions.
    Lan Y; Deng B; Kim C; Thornton EC
    Geochem Trans; 2007 Apr; 8():4. PubMed ID: 17430591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of organic compounds from cooling tower blowdown by electrochemical oxidation: Role of electrodes and operational parameters.
    Saha P; Bruning H; Wagner TV; Rijnaarts HHM
    Chemosphere; 2020 Nov; 259():127491. PubMed ID: 32650167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A single microbial electrochemical system for CO
    Fu XZ; Li J; Pan XR; Huang L; Li CX; Cui S; Liu HQ; Tan ZL; Li WW
    Bioresour Technol; 2020 Feb; 297():122448. PubMed ID: 31771810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Poison-Resistant Single-Atom Co-N
    Lei G; Tong Y; Shen L; Zheng Y; Liang S; Lin W; Liu F; Cao Y; Xiao Y; Jiang L
    Small; 2021 Nov; 17(46):e2104939. PubMed ID: 34668315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater.
    Zhai LF; Song W; Tong ZH; Sun M
    J Hazard Mater; 2012 Dec; 243():350-6. PubMed ID: 23149300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.