These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 37738945)
1. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait. Horsak B; Eichmann A; Lauer K; Prock K; Krondorfer P; Siragy T; Dumphart B J Biomech; 2023 Oct; 159():111801. PubMed ID: 37738945 [TBL] [Abstract][Full Text] [Related]
2. Inter-trial variability is higher in 3D markerless compared to marker-based motion capture: Implications for data post-processing and analysis. Horsak B; Prock K; Krondorfer P; Siragy T; Simonlehner M; Dumphart B J Biomech; 2024 Mar; 166():112049. PubMed ID: 38493576 [TBL] [Abstract][Full Text] [Related]
3. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks. Turner JA; Chaaban CR; Padua DA J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926 [TBL] [Abstract][Full Text] [Related]
4. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101 [TBL] [Abstract][Full Text] [Related]
5. Comparison of markerless and marker-based motion capture of gait kinematics in individuals with cerebral palsy and chronic stroke: A case study series. Steffensen EA; Magalhães F; Knarr BA; Kingston DC Res Sq; 2023 Feb; ():. PubMed ID: 36798184 [TBL] [Abstract][Full Text] [Related]
6. Repeatability and minimal detectable change including clothing effects for smartphone-based 3D markerless motion capture. Horsak B; Kainz H; Dumphart B J Biomech; 2024 Oct; 175():112281. PubMed ID: 39163799 [TBL] [Abstract][Full Text] [Related]
7. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. Wade L; Needham L; McGuigan P; Bilzon J PeerJ; 2022; 10():e12995. PubMed ID: 35237469 [TBL] [Abstract][Full Text] [Related]
8. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434 [TBL] [Abstract][Full Text] [Related]
10. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. Kanko RM; Laende EK; Strutzenberger G; Brown M; Selbie WS; DePaul V; Scott SH; Deluzio KJ J Biomech; 2021 Jun; 122():110414. PubMed ID: 33915475 [TBL] [Abstract][Full Text] [Related]
11. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait. Ripic Z; Nienhuis M; Signorile JF; Best TM; Jacobs KA; Eltoukhy M J Biomech; 2023 Oct; 159():111793. PubMed ID: 37725886 [TBL] [Abstract][Full Text] [Related]
12. Comparison of kinematics between Theia markerless and conventional marker-based gait analysis in clinical patients. Wren TAL; Isakov P; Rethlefsen SA Gait Posture; 2023 Jul; 104():9-14. PubMed ID: 37285635 [TBL] [Abstract][Full Text] [Related]
13. A Step Forward Understanding Directional Limitations in Markerless Smartphone-Based Gait Analysis: A Pilot Study. Martiš P; Košutzká Z; Kranzl A Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793945 [TBL] [Abstract][Full Text] [Related]
14. Comparison of kinematics and joint moments calculations for lower limbs during gait using markerless and marker-based motion capture. Huang T; Ruan M; Huang S; Fan L; Wu X Front Bioeng Biotechnol; 2024; 12():1280363. PubMed ID: 38532880 [No Abstract] [Full Text] [Related]
15. Development of a Robust, Simple, and Affordable Human Gait Analysis System Using Bottom-Up Pose Estimation With a Smartphone Camera. Viswakumar A; Rajagopalan V; Ray T; Gottipati P; Parimi C Front Physiol; 2021; 12():784865. PubMed ID: 35069246 [TBL] [Abstract][Full Text] [Related]
16. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy. Pagnon D; Domalain M; Reveret L Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326 [TBL] [Abstract][Full Text] [Related]
17. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. Ceseracciu E; Sawacha Z; Cobelli C PLoS One; 2014; 9(3):e87640. PubMed ID: 24595273 [TBL] [Abstract][Full Text] [Related]
18. On the reliability of single-camera markerless systems for overground gait monitoring. Boldo M; Di Marco R; Martini E; Nardon M; Bertucco M; Bombieri N Comput Biol Med; 2024 Mar; 171():108101. PubMed ID: 38340440 [TBL] [Abstract][Full Text] [Related]
19. Improving Gait Analysis Techniques with Markerless Pose Estimation Based on Smartphone Location. Yang J; Park K Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391625 [TBL] [Abstract][Full Text] [Related]
20. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Scataglini S; Abts E; Van Bocxlaer C; Van den Bussche M; Meletani S; Truijen S Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]