These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37739288)
41. The Y46D Mutation Destabilizes Dense Packing of the Second Greek Key Pair of Human γC-Crystallin Causing Congenital Nuclear Cataracts. Vendra VPR; Ostrowski C; Clark R; Dyba M; Tarasov SG; Hejtmancik JF Biochemistry; 2023 Jun; 62(12):1864-1877. PubMed ID: 37184593 [TBL] [Abstract][Full Text] [Related]
42. A novel gammaD-crystallin mutation causes mild changes in protein properties but leads to congenital coralliform cataract. Zhang LY; Gong B; Tong JP; Fan DS; Chiang SW; Lou D; Lam DS; Yam GH; Pang CP Mol Vis; 2009 Aug; 15():1521-9. PubMed ID: 19668596 [TBL] [Abstract][Full Text] [Related]
43. Cataract-causing mutation S228P promotes βB1-crystallin aggregation and degradation by separating two interacting loops in C-terminal domain. Qi LB; Hu LD; Liu H; Li HY; Leng XY; Yan YB Protein Cell; 2016 Jul; 7(7):501-15. PubMed ID: 27318838 [TBL] [Abstract][Full Text] [Related]
44. A molecular dynamics approach to explore the structural characterization of cataract causing mutation R58H on human γD crystallin. Karunakaran R; Srikumar PS Mol Cell Biochem; 2018 Dec; 449(1-2):55-62. PubMed ID: 29532225 [TBL] [Abstract][Full Text] [Related]
45. Reactive cysteine residues in the oxidative dimerization and Cu Ramkumar S; Fan X; Wang B; Yang S; Monnier VM Biochim Biophys Acta Mol Basis Dis; 2018 Nov; 1864(11):3595-3604. PubMed ID: 30251679 [TBL] [Abstract][Full Text] [Related]
46. Computational design and biophysical characterization of aggregation-resistant point mutations for γD crystallin illustrate a balance of conformational stability and intrinsic aggregation propensity. Sahin E; Jordan JL; Spatara ML; Naranjo A; Costanzo JA; Weiss WF; Robinson AS; Fernandez EJ; Roberts CJ Biochemistry; 2011 Feb; 50(5):628-39. PubMed ID: 21184609 [TBL] [Abstract][Full Text] [Related]
47. Acetylation of Gly1 and Lys2 promotes aggregation of human γD-crystallin. DiMauro MA; Nandi SK; Raghavan CT; Kar RK; Wang B; Bhunia A; Nagaraj RH; Biswas A Biochemistry; 2014 Nov; 53(46):7269-82. PubMed ID: 25393041 [TBL] [Abstract][Full Text] [Related]
48. The contribution of individual residues of an aggregative hexapeptide derived from the human γD-crystallin to its amyloidogenicity. Abu-Hussien M; Viswanathan GK; Simhaev L; Paul A; Engel H; Gazit E; Segal D Int J Biol Macromol; 2022 Mar; 201():182-192. PubMed ID: 34998884 [TBL] [Abstract][Full Text] [Related]
49. Assessing the Structures and Interactions of γD-Crystallin Deamidation Variants. Guseman AJ; Whitley MJ; González JJ; Rathi N; Ambarian M; Gronenborn AM Structure; 2021 Mar; 29(3):284-291.e3. PubMed ID: 33264606 [TBL] [Abstract][Full Text] [Related]
50. Identification of the Most Impactful Asparagine Residues for γS-Crystallin Aggregation by Deamidation. Kato K; Nakayoshi T; Kitamura Y; Kurimoto E; Oda A; Ishikawa Y Biochemistry; 2023 Jun; 62(11):1679-1688. PubMed ID: 37155656 [TBL] [Abstract][Full Text] [Related]
51. Mercury-induced aggregation of human lens γ-crystallins reveals a potential role in cataract disease. Domínguez-Calva JA; Pérez-Vázquez ML; Serebryany E; King JA; Quintanar L J Biol Inorg Chem; 2018 Oct; 23(7):1105-1118. PubMed ID: 30167892 [TBL] [Abstract][Full Text] [Related]
52. The 18th amino acid glycine plays an essential role in maintaining the structural stabilities of γS-crystallin linking with congenital cataract. Zhu S; Xi Y; Xu J; Hu L; Luo C; Yao K; Chen X Int J Biol Macromol; 2023 Nov; 251():126339. PubMed ID: 37586630 [TBL] [Abstract][Full Text] [Related]
53. The cataract-associated V41M mutant of human γS-crystallin shows specific structural changes that directly enhance local surface hydrophobicity. Bharat SV; Shekhtman A; Pande J Biochem Biophys Res Commun; 2014 Jan; 443(1):110-4. PubMed ID: 24287181 [TBL] [Abstract][Full Text] [Related]
54. Aggregation of Trp > Glu point mutants of human gamma-D crystallin provides a model for hereditary or UV-induced cataract. Serebryany E; Takata T; Erickson E; Schafheimer N; Wang Y; King JA Protein Sci; 2016 Jun; 25(6):1115-28. PubMed ID: 26991007 [TBL] [Abstract][Full Text] [Related]
56. Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. Acosta-Sampson L; King J J Mol Biol; 2010 Aug; 401(1):134-52. PubMed ID: 20621668 [TBL] [Abstract][Full Text] [Related]
57. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Liu J; Xu W; Wang K; Chen F; Ren L; Xu J; Yao K; Chen X Int J Biol Macromol; 2022 Jan; 195():475-482. PubMed ID: 34896472 [TBL] [Abstract][Full Text] [Related]
58. Investigation of the early stages of human γD-crystallin aggregation process. Chang CK; Wang SS; Lo CH; Hsiao HC; Wu JW J Biomol Struct Dyn; 2017 Apr; 35(5):1042-1054. PubMed ID: 27025196 [TBL] [Abstract][Full Text] [Related]
59. The human W42R γD-crystallin mutant structure provides a link between congenital and age-related cataracts. Ji F; Jung J; Koharudin LM; Gronenborn AM J Biol Chem; 2013 Jan; 288(1):99-109. PubMed ID: 23124202 [TBL] [Abstract][Full Text] [Related]
60. Effects of cataract-causing mutations W59C and W151C on βB2-crystallin structure, stability and folding. Zhao WJ; Xu J; Chen XJ; Liu HH; Yao K; Yan YB Int J Biol Macromol; 2017 Oct; 103():764-770. PubMed ID: 28528950 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]