BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37739535)

  • 1. Flexoelectric and piezoelectric effects in micro- and nanocellulose films.
    Trellu H; Le Scornec J; Leray N; Moreau C; Villares A; Cathala B; Guiffard B
    Carbohydr Polym; 2023 Dec; 321():121305. PubMed ID: 37739535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic Improvement of Flexoelectric Coefficient in Liquid Crystal Embedded Flexible PVDF Polymer Composite for Energy Harvesting Applications.
    Bora KJ; Sinha A
    Macromol Rapid Commun; 2024 May; ():e2400148. PubMed ID: 38733365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose Nanofibril Film as a Piezoelectric Sensor Material.
    Rajala S; Siponkoski T; Sarlin E; Mettänen M; Vuoriluoto M; Pammo A; Juuti J; Rojas OJ; Franssila S; Tuukkanen S
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15607-14. PubMed ID: 27232271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoelectric Mimicry of Flexoelectricity.
    Abdollahi A; Vásquez-Sancho F; Catalan G
    Phys Rev Lett; 2018 Nov; 121(20):205502. PubMed ID: 30500243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling Analysis of Flexoelectric Effect on Functionally Graded Piezoelectric Cantilever Nanobeams.
    Chen Y; Zhang M; Su Y; Zhou Z
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34064085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties.
    Hassan SH; Velayutham TS; Chen YW; Lee HV
    Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B; Hassan EB; Schilling MW; Mahmoud B
    Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large deflection analysis of circular piezoelectric micro-actuator with flexoelectric effect.
    Ji X
    Sci Rep; 2023 Nov; 13(1):19388. PubMed ID: 37938249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Actuating of a Simply Supported Beam with the Flexoelectric Effect.
    Fan M; Min H
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32276353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Morphological Characterization of Cellulose Nano/Microfibers through Image Skeleton Analysis.
    Sanchez-Salvador JL; Campano C; Lopez-Exposito P; Tarrés Q; Mutjé P; Delgado-Aguilar M; Monte MC; Blanco A
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment Effect on the Piezoelectric Properties of Ultrathin Cellulose Nanofiber Films.
    Zhai L; Kim HC; Kim JW; Kim J
    ACS Appl Bio Mater; 2020 Jul; 3(7):4329-4334. PubMed ID: 35025432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films.
    Hakalahti M; Salminen A; Seppälä J; Tammelin T; Hänninen T
    Carbohydr Polym; 2015 Aug; 126():78-82. PubMed ID: 25933525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous cellulose composite aerogel films with super piezoelectric properties for energy harvesting.
    Song Y; Wu T; Bao J; Xu M; Yang Q; Zhu L; Shi Z; Hu GH; Xiong C
    Carbohydr Polym; 2022 Jul; 288():119407. PubMed ID: 35450658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flexoelectric microelectromechanical system on silicon.
    Bhaskar UK; Banerjee N; Abdollahi A; Wang Z; Schlom DG; Rijnders G; Catalan G
    Nat Nanotechnol; 2016 Mar; 11(3):263-6. PubMed ID: 26571008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.
    Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-Responsive Properties of Asymmetric Nanopapers of Nanofibrillated Cellulose.
    Chemin M; Beaumal B; Cathala B; Villares A
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32679783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric poling and electromechanical characterization of 0.1-mm-thick sensor films and 0.2-mm-thick cable layers from piezoelectric poly(vinylidene fluoride-trifluoroethylene).
    Wegener M; Gerhard-Multhaupt R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):921-31. PubMed ID: 12894925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computation of flexoelectric coefficients of a MoS
    Yang Y; Hirsinger L; Devel M
    J Chem Phys; 2022 May; 156(17):174104. PubMed ID: 35525670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.