These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37739551)

  • 1. Phage design and directed evolution to evolve phage for therapy.
    Arora P; Jain A; Kumar A
    Prog Mol Biol Transl Sci; 2023; 200():103-126. PubMed ID: 37739551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Evolution of the TolC-Receptor Phage U136B Functionally Identifies a Tail Fiber Protein Involved in Adsorption through Strong Parallel Adaptation.
    Burmeister AR; Tzintzun-Tapia E; Roush C; Mangal I; Barahman R; Bjornson RD; Turner PE
    Appl Environ Microbiol; 2023 Jun; 89(6):e0007923. PubMed ID: 37191555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promises and Pitfalls of In Vivo Evolution to Improve Phage Therapy.
    Bull JJ; Levin BR; Molineux IJ
    Viruses; 2019 Nov; 11(12):. PubMed ID: 31766537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phage steering of antibiotic-resistance evolution in the bacterial pathogen,
    Gurney J; Pradier L; Griffin JS; Gougat-Barbera C; Chan BK; Turner PE; Kaltz O; Hochberg ME
    Evol Med Public Health; 2020; 2020(1):148-157. PubMed ID: 34254028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Associations among Antibiotic and Phage Resistance Phenotypes in Natural and Clinical
    Allen RC; Pfrunder-Cardozo KR; Meinel D; Egli A; Hall AR
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy.
    Tagliaferri TL; Jansen M; Horz HP
    Front Cell Infect Microbiol; 2019; 9():22. PubMed ID: 30834237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli.
    Valério N; Oliveira C; Jesus V; Branco T; Pereira C; Moreirinha C; Almeida A
    Virus Res; 2017 Aug; 240():8-17. PubMed ID: 28746884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages.
    Kim BO; Kim ES; Yoo YJ; Bae HW; Chung IY; Cho YH
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30889807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics.
    Usman SS; Uba AI; Christina E
    Mol Biol Rep; 2023 Aug; 50(8):7055-7067. PubMed ID: 37392288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic Guidelines for Bacteriophage Isolation and Characterization.
    Samir S
    Recent Pat Biotechnol; 2023; 17(4):312-331. PubMed ID: 36263478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future.
    Łobocka M; Dąbrowska K; Górski A
    BioDrugs; 2021 May; 35(3):255-280. PubMed ID: 33881767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary Rationale for Phages as Complements of Antibiotics.
    Torres-Barceló C; Hochberg ME
    Trends Microbiol; 2016 Apr; 24(4):249-256. PubMed ID: 26786863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage and phage cocktails formulations.
    Mani I
    Prog Mol Biol Transl Sci; 2023; 200():159-169. PubMed ID: 37739554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phage Therapy: The Pharmacology of Antibacterial Viruses.
    Danis-Wlodarczyk K; Dąbrowska K; Abedon ST
    Curr Issues Mol Biol; 2021; 40():81-164. PubMed ID: 32503951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriophages, phage endolysins and antimicrobial peptides - the possibilities for their common use to combat infections and in the design of new drugs.
    Mirski T; Lidia M; Nakonieczna A; Gryko R
    Ann Agric Environ Med; 2019 Jun; 26(2):203-209. PubMed ID: 31232046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis.
    Furusawa T; Iwano H; Hiyashimizu Y; Matsubara K; Higuchi H; Nagahata H; Niwa H; Katayama Y; Kinoshita Y; Hagiwara K; Iwasaki T; Tanji Y; Yokota H; Tamura Y
    Appl Environ Microbiol; 2016 Sep; 82(17):5332-9. PubMed ID: 27342558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages.
    Peng H; Borg RE; Dow LP; Pruitt BL; Chen IA
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):1951-1961. PubMed ID: 31932441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic phage and its application in phage therapy.
    Kumar A; Yadav A
    Prog Mol Biol Transl Sci; 2023; 200():61-89. PubMed ID: 37739560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects.
    Anyaegbunam NJ; Anekpo CC; Anyaegbunam ZKG; Doowuese Y; Chinaka CB; Odo OJ; Sharndama HC; Okeke OP; Mba IE
    Microbiol Res; 2022 Nov; 264():127155. PubMed ID: 35969943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phage-Assisted Continuous Evolution (PACE): A Guide Focused on Evolving Protein-DNA Interactions.
    Popa SC; Inamoto I; Thuronyi BW; Shin JA
    ACS Omega; 2020 Oct; 5(42):26957-26966. PubMed ID: 33134656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.