These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 3774008)

  • 1. Phosphorylation of tubulin enhances its interaction with membranes.
    Hargreaves AJ; Wandosell F; Avila J
    Nature; 1986 Oct 30-Nov 5; 323(6091):827-8. PubMed ID: 3774008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calmodulin in neurotransmitter release and synaptic function.
    DeLorenzo RJ
    Fed Proc; 1982 May; 41(7):2265-72. PubMed ID: 6122609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of CaMKII at Thr253 occurs in vivo and enhances binding to isolated postsynaptic densities.
    Migues PV; Lehmann IT; Fluechter L; Cammarota M; Gurd JW; Sim AT; Dickson PW; Rostas JA
    J Neurochem; 2006 Jul; 98(1):289-99. PubMed ID: 16805815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calmodulin and Ca2+-dependent phosphorylation and dephosphorylation of 63-kDa subunit-containing bovine brain calmodulin-stimulated cyclic nucleotide phosphodiesterase isozyme.
    Sharma RK; Wang JH
    J Biol Chem; 1986 Jan; 261(3):1322-8. PubMed ID: 3944089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific postsynaptic density proteins bind tubulin and calmodulin-dependent protein kinase type II.
    Sahyoun N; LeVine H; McDonald OB; Cuatrecasas P
    J Biol Chem; 1986 Sep; 261(26):12339-44. PubMed ID: 3745191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin and protein phosphorylation: implications in brain ischemia.
    Chin JH; Buckholz TM; DeLorenzo RJ
    Prog Brain Res; 1985; 63():169-84. PubMed ID: 3012634
    [No Abstract]   [Full Text] [Related]  

  • 8. Identification of endogenous calmodulin-dependent kinase and calmodulin-binding proteins in cold-stable microtubule preparations from rat brain.
    Larson RE; Goldenring JR; Vallano ML; DeLorenzo RJ
    J Neurochem; 1985 May; 44(5):1566-74. PubMed ID: 2985755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H89 sensitive kinase regulates the translocation of Sar1 onto the ER membrane through phosphorylation of ER-coupled β-tubulin.
    Nakagawa H; Miyazaki S; Abe T; Umadome H; Tanaka K; Nishimura K; Komori M; Matsuo S
    Int J Biochem Cell Biol; 2011 Mar; 43(3):423-30. PubMed ID: 21111843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-calmodulin tubulin kinase system and its role in mediating the Ca2+ signal in brain.
    Delorenzo RJ; Gonzalez B; Goldenring J; Bowling A; Jacobson R
    Prog Brain Res; 1982; 56():257-86. PubMed ID: 6298873
    [No Abstract]   [Full Text] [Related]  

  • 11. Association of p34cdc2 kinase and MAP kinase with microtubules during the meiotic maturation of Xenopus oocytes.
    Fellous A; Kubelka M; Thibier C; Taieb F; Haccard O; Jessus C
    Int J Dev Biol; 1994 Dec; 38(4):651-9. PubMed ID: 7779687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tau phosphorylation by diisopropyl phosphorofluoridate (DFP)-treated hen brain supernatant inhibits its binding with microtubules: role of Ca2+/Calmodulin-dependent protein kinase II in tau phosphorylation.
    Gupta RP; Abou-Donia MB
    Arch Biochem Biophys; 1999 May; 365(2):268-78. PubMed ID: 10328822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renaturation of calcium/calmodulin-dependent protein kinase activity after electrophoretic transfer from sodium dodecyl sulfate-polyacrylamide gels to membranes.
    Shackelford DA; Zivin JA
    Anal Biochem; 1993 May; 211(1):131-8. PubMed ID: 8391760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PASK (proline-alanine-rich Ste20-related kinase) binds to tubulin and microtubules and is involved in microtubule stabilization.
    Tsutsumi T; Kosaka T; Ushiro H; Kimura K; Honda T; Kayahara T; Mizoguchi A
    Arch Biochem Biophys; 2008 Sep; 477(2):267-78. PubMed ID: 18675246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and phosphorylation of a MARCKS-like protein in gastric chief cells: further evidence for modulation of pepsinogen secretion by interaction of Ca2+/calmodulin with protein kinase C.
    Raufman JP; Malhotra R; Xie Q; Raffaniello RD
    J Cell Biochem; 1997 Mar; 64(3):514-23. PubMed ID: 9057109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of tubulin by a calmodulin-dependent protein kinase.
    Wandosell F; Serrano L; Hernández MA; Avila J
    J Biol Chem; 1986 Aug; 261(22):10332-9. PubMed ID: 3733711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the major postsynaptic density protein as homologous with the major calmodulin-binding subunit of a calmodulin-dependent protein kinase.
    Goldenring JR; McGuire JS; DeLorenzo RJ
    J Neurochem; 1984 Apr; 42(4):1077-84. PubMed ID: 6699638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular localization of iodinated thyroid tubulin.
    Hargreaves AJ; Lamas L; Santisteban P; Avila J
    Biosci Rep; 1989 Jun; 9(3):375-82. PubMed ID: 2775864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The growth cone cytoskeleton. Glycoprotein association, calmodulin binding, and tyrosine/serine phosphorylation of tubulin.
    Cheng N; Sahyoun N
    J Biol Chem; 1988 Mar; 263(8):3935-42. PubMed ID: 3126182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two types of brain calmodulin-dependent protein kinase II: morphological, biochemical and immunochemical properties.
    LeVine H; Sahyoun NE
    Brain Res; 1988 Jan; 439(1-2):47-55. PubMed ID: 2833988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.