These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 37740347)
1. Emergence of magnetic nanoparticles in photothermal and ferroptotic therapies. Van de Walle A; Figuerola A; Espinosa A; Abou-Hassan A; Estrader M; Wilhelm C Mater Horiz; 2023 Oct; 10(11):4757-4775. PubMed ID: 37740347 [TBL] [Abstract][Full Text] [Related]
2. Iron Oxide Nanoflowers @ CuS Hybrids for Cancer Tri-Therapy: Interplay of Photothermal Therapy, Magnetic Hyperthermia and Photodynamic Therapy. Curcio A; Silva AKA; Cabana S; Espinosa A; Baptiste B; Menguy N; Wilhelm C; Abou-Hassan A Theranostics; 2019; 9(5):1288-1302. PubMed ID: 30867831 [TBL] [Abstract][Full Text] [Related]
3. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. Bhana S; Lin G; Wang L; Starring H; Mishra SR; Liu G; Huang X ACS Appl Mater Interfaces; 2015 Jun; 7(21):11637-47. PubMed ID: 25965727 [TBL] [Abstract][Full Text] [Related]
4. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Shi D; Sadat ME; Dunn AW; Mast DB Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408 [TBL] [Abstract][Full Text] [Related]
5. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Zhou Z; Sun Y; Shen J; Wei J; Yu C; Kong B; Liu W; Yang H; Yang S; Wang W Biomaterials; 2014 Aug; 35(26):7470-8. PubMed ID: 24881997 [TBL] [Abstract][Full Text] [Related]
6. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. Abed Z; Beik J; Laurent S; Eslahi N; Khani T; Davani ES; Ghaznavi H; Shakeri-Zadeh A J Cancer Res Clin Oncol; 2019 May; 145(5):1213-1219. PubMed ID: 30847551 [TBL] [Abstract][Full Text] [Related]
7. Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI. Chen C; Wang S; Li L; Wang P; Chen C; Sun Z; Song T Biomaterials; 2016 Oct; 104():352-60. PubMed ID: 27487574 [TBL] [Abstract][Full Text] [Related]
8. Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy. Feng Q; Zhang Y; Zhang W; Hao Y; Wang Y; Zhang H; Hou L; Zhang Z Acta Biomater; 2017 Feb; 49():402-413. PubMed ID: 27890732 [TBL] [Abstract][Full Text] [Related]
9. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. T S A; Lu YJ; Chen JP Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in functional nanostructures as cancer photothermal therapy. Hussein EA; Zagho MM; Nasrallah GK; Elzatahry AA Int J Nanomedicine; 2018; 13():2897-2906. PubMed ID: 29844672 [TBL] [Abstract][Full Text] [Related]
11. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789 [TBL] [Abstract][Full Text] [Related]
12. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia? Espinosa A; Bugnet M; Radtke G; Neveu S; Botton GA; Wilhelm C; Abou-Hassan A Nanoscale; 2015 Dec; 7(45):18872-7. PubMed ID: 26468627 [TBL] [Abstract][Full Text] [Related]
13. Iron oxide-carbon core-shell nanoparticles for dual-modal imaging-guided photothermal therapy. Wang H; Mu Q; Revia R; Wang K; Tian B; Lin G; Lee W; Hong YK; Zhang M J Control Release; 2018 Nov; 289():70-78. PubMed ID: 30266634 [TBL] [Abstract][Full Text] [Related]
14. Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. Guo Y; Zhang Z; Kim DH; Li W; Nicolai J; Procissi D; Huan Y; Han G; Omary RA; Larson AC Int J Nanomedicine; 2013; 8():3437-46. PubMed ID: 24039426 [TBL] [Abstract][Full Text] [Related]
15. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Jabeen F; Najam-ul-Haq M; Javeed R; Huck CW; Bonn GK Molecules; 2014 Dec; 19(12):20580-93. PubMed ID: 25501919 [TBL] [Abstract][Full Text] [Related]
16. Iron oxide nanoparticles conjugated with organic optical probes for Sharma S; Lamichhane N; Parul ; Sen T; Roy I Nanomedicine (Lond); 2021 May; 16(11):943-962. PubMed ID: 33913338 [TBL] [Abstract][Full Text] [Related]
17. Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment. Wang J; Wu X; Shen P; Wang J; Shen Y; Shen Y; Webster TJ; Deng J Int J Nanomedicine; 2020; 15():1903-1914. PubMed ID: 32256067 [TBL] [Abstract][Full Text] [Related]
18. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Blanco-Andujar C; Walter A; Cotin G; Bordeianu C; Mertz D; Felder-Flesch D; Begin-Colin S Nanomedicine (Lond); 2016 Jul; 11(14):1889-910. PubMed ID: 27389703 [TBL] [Abstract][Full Text] [Related]
19. Calcium-carbonate packaging magnetic polydopamine nanoparticles loaded with indocyanine green for near-infrared induced photothermal/photodynamic therapy. Xue P; Hou M; Sun L; Li Q; Zhang L; Xu Z; Kang Y Acta Biomater; 2018 Nov; 81():242-255. PubMed ID: 30267884 [TBL] [Abstract][Full Text] [Related]
20. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Rethi L; Rethi L; Liu CH; Hyun TV; Chen CH; Chuang EY Int J Nanomedicine; 2023; 18():5607-5623. PubMed ID: 37814664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]