These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37740366)

  • 1. A microfluidic mechano-chemostat for tissues and organisms reveals that confined growth is accompanied with increased macromolecular crowding.
    Ben Meriem Z; Mateo T; Faccini J; Denais C; Dusfour-Castan R; Guynet C; Merle T; Suzanne M; Di-Luoffo M; Guillermet-Guibert J; Alric B; Landiech S; Malaquin L; Mesnilgrente F; Laborde A; Mazenq L; Courson R; Delarue M
    Lab Chip; 2023 Oct; 23(20):4445-4455. PubMed ID: 37740366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechano-chemostats to study the effects of compressive stress on yeast.
    Holt LJ; Hallatschek O; Delarue M
    Methods Cell Biol; 2018; 147():215-231. PubMed ID: 30165959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic Platform for Stimulating Chondrocytes with Dynamic Compression.
    Lee D; Erickson A; Dudley AT; Ryu S
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding limits growth under pressure.
    Alric B; Formosa-Dague C; Dague E; Holt LJ; Delarue M
    Nat Phys; 2022 Apr; 18(4):411-416. PubMed ID: 37152719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip.
    Prevedello L; Michielin F; Balcon M; Savio E; Pavan P; Elvassore N
    Ann Biomed Eng; 2019 Jan; 47(1):231-242. PubMed ID: 30218223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications.
    Hsu MC; Mansouri M; Ahamed NNN; Larson SM; Joshi IM; Ahmed A; Borkholder DA; Abhyankar VV
    Sci Rep; 2022 Jun; 12(1):10769. PubMed ID: 35750792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry.
    Kim J; You JB; Nam SM; Seo S; Im SG; Lee W
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11156-11166. PubMed ID: 28267308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells.
    Ho KKY; Wang YL; Wu J; Liu AP
    Front Bioeng Biotechnol; 2018; 6():148. PubMed ID: 30386779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidics on the fly: Inexpensive rapid fabrication of thermally laminated microfluidic devices for live imaging and multimodal perturbations of multicellular systems.
    Levis M; Kumar N; Apakian E; Moreno C; Hernandez U; Olivares A; Ontiveros F; Zartman JJ
    Biomicrofluidics; 2019 Mar; 13(2):024111. PubMed ID: 31065310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics as a tool to assess and induce emulsion destabilization.
    Porto Santos T; Cejas CM; Cunha RL
    Soft Matter; 2022 Jan; 18(4):698-710. PubMed ID: 35037925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).
    Yu ZT; Cheung MK; Liu SX; Fu J
    Small; 2016 Sep; 12(33):4521-30. PubMed ID: 27409528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SCWISh network is essential for survival under mechanical pressure.
    Delarue M; Poterewicz G; Hoxha O; Choi J; Yoo W; Kayser J; Holt L; Hallatschek O
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13465-13470. PubMed ID: 29187529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Chip for Applying Mechanical Forces on Human Skin Models Under Dynamic Culture Conditions.
    Kaiser K; Sørensen JA; Brewer JR
    Tissue Eng Part C Methods; 2024 Feb; 30(2):85-91. PubMed ID: 37950718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments.
    Chi PY; Spuul P; Tseng FG; Genot E; Chou CF; Taloni A
    Adv Exp Med Biol; 2019; 1146():79-103. PubMed ID: 31612455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic valvular chips and a numerical lymphatic vessel model for the study of lymph transport characteristics.
    In J; Ryu J; Yu H; Kang D; Kim T; Kim J
    Lab Chip; 2021 Jun; 21(11):2283-2293. PubMed ID: 33942040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses.
    Maremonti MI; Panzetta V; Dannhauser D; Netti PA; Causa F
    J R Soc Interface; 2022 Apr; 19(189):20210880. PubMed ID: 35440204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Order, intermittency, and pressure fluctuations in a system of proliferating rods.
    Orozco-Fuentes S; Boyer D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012715. PubMed ID: 23944499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.