These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37740366)

  • 21. Order, intermittency, and pressure fluctuations in a system of proliferating rods.
    Orozco-Fuentes S; Boyer D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012715. PubMed ID: 23944499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic force micropiston: an integrated force/microfluidic device for the application of compressive forces in a confined environment.
    Fisher JK; Kleckner N
    Rev Sci Instrum; 2014 Feb; 85(2):023704. PubMed ID: 24593368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiplexed microfluidic screening of bacterial chemotaxis.
    Stehnach MR; Henshaw RJ; Floge SA; Guasto JS
    Elife; 2023 Jul; 12():. PubMed ID: 37486823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanostimulation of Multicellular Organisms Through a High-Throughput Microfluidic Compression System.
    Sönmez UM; Frey N; Minden JS; LeDuc PR
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36622011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of hydrodynamically confined microfluidics: controlling flow envelope and pressure.
    Christ KV; Turner KT
    Lab Chip; 2011 Apr; 11(8):1491-501. PubMed ID: 21359386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A microfabricated platform for the study of chondrogenesis under different compressive loads.
    Kowsari-Esfahan R; Jahanbakhsh A; Saidi MS; Bonakdar S
    J Mech Behav Biomed Mater; 2018 Feb; 78():404-413. PubMed ID: 29223037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-tension-confined microfluidics and their applications.
    You I; Yun N; Lee H
    Chemphyschem; 2013 Feb; 14(3):471-81. PubMed ID: 23303621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-Printed Centrifugal Pump Driven by Magnetic Force in Applications for Microfluidics in Biological Analysis.
    Jo B; Morimoto Y; Takeuchi S
    Adv Healthc Mater; 2022 Dec; 11(24):e2200593. PubMed ID: 35608243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems.
    Kuzmic N; Moore T; Devadas D; Young EWK
    Biomech Model Mechanobiol; 2019 Jun; 18(3):717-731. PubMed ID: 30604299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.
    Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow-induced stress on adherent cells in microfluidic devices.
    Shemesh J; Jalilian I; Shi A; Heng Yeoh G; Knothe Tate ML; Ebrahimi Warkiani M
    Lab Chip; 2015 Nov; 15(21):4114-27. PubMed ID: 26334370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic approaches for the assessment of blood cell trauma: a focus on thrombotic risk in mechanical circulatory support devices.
    Consolo F; Dimasi A; Rasponi M; Valerio L; Pappalardo F; Bluestein D; Slepian MJ; Fiore GB; Redaelli A
    Int J Artif Organs; 2016 Jun; 39(4):184-93. PubMed ID: 27034318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of variations in mechanical stress and strain of human blood vessels: mechanical reference for vascular cell mechano-biology.
    Yang S; Gong X; Qi Y; Jiang Z
    Biomech Model Mechanobiol; 2020 Apr; 19(2):519-531. PubMed ID: 31494790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.