These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37740402)

  • 1. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation.
    Fakhri V; Su CH; Tavakoli Dare M; Bazmi M; Jafari A; Pirouzfar V
    J Mater Chem B; 2023 Oct; 11(40):9597-9629. PubMed ID: 37740402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review on the Impact of Polyols on the Properties of Bio-Based Polyesters.
    Lang K; Sánchez-Leija RJ; Gross RA; Linhardt RJ
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in ring opening polymerization of lactones for biomedical applications.
    Albertsson AC; Varma IK
    Biomacromolecules; 2003; 4(6):1466-86. PubMed ID: 14606869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocrosslinkable polyesters and poly(ester anhydride)s for biomedical applications.
    Seppälä J; Korhonen H; Hakala R; Malin M
    Macromol Biosci; 2011 Dec; 11(12):1647-52. PubMed ID: 22052651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite: A journey from biomaterials to advanced functional materials.
    Mondal S; Park S; Choi J; Vu TTH; Doan VHM; Vo TT; Lee B; Oh J
    Adv Colloid Interface Sci; 2023 Nov; 321():103013. PubMed ID: 37839281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications.
    Zamboulis A; Nakiou EA; Christodoulou E; Bikiaris DN; Kontonasaki E; Liverani L; Boccaccini AR
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31835372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration of Electrospun PLA Degradation by Addition of Gelatin.
    Bogdanova A; Pavlova E; Polyanskaya A; Volkova M; Biryukova E; Filkov G; Trofimenko A; Durymanov M; Klinov D; Bagrov D
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(lactic acid) blends in biomedical applications.
    Saini P; Arora M; Kumar MNVR
    Adv Drug Deliv Rev; 2016 Dec; 107():47-59. PubMed ID: 27374458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism.
    Barrett DG; Yousaf MN
    Molecules; 2009 Oct; 14(10):4022-50. PubMed ID: 19924045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resorbable polyesters: composition, properties, applications.
    Amecke B; Bendix D; Entenmann G
    Clin Mater; 1992; 10(1-2):47-50. PubMed ID: 10171204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation.
    Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for biodegradation of composite materials made of polyesters and tricalcium phosphates.
    Pan J; Han X; Niu W; Cameron RE
    Biomaterials; 2011 Mar; 32(9):2248-55. PubMed ID: 21186057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polymer networks based on oligolactide macromers: synthesis, properties and biomedical applications.
    Schnabelrauch M; Vogt S; Larcher Y; Wilke I
    Biomol Eng; 2002 Aug; 19(2-6):295-8. PubMed ID: 12202198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of unsaturated poly(ester-amide)s and their hydrogels.
    Guo K; Chu CC
    Biomaterials; 2007 Aug; 28(22):3284-94. PubMed ID: 17466369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic synthesis of furan-based copolymers: Material characterization and potential for biomedical applications.
    Sokołowska M; Zarei M; Fray ME
    Polim Med; 2024; 54(1):59-69. PubMed ID: 38533623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics.
    Zhao Y; Zhong W
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.