These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37740405)

  • 1. Hydrodynamic lubrication in colloidal gels.
    Torre KW; de Graaf J
    Soft Matter; 2023 Oct; 19(38):7388-7398. PubMed ID: 37740405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normal modes of weak colloidal gels.
    Varga Z; Swan JW
    Phys Rev E; 2018 Jan; 97(1-1):012608. PubMed ID: 29448322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of hydrodynamic interactions on the aggregation kinetics of sedimenting colloidal particles.
    Turetta L; Lattuada M
    Soft Matter; 2022 Feb; 18(8):1715-1730. PubMed ID: 35147636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key role of hydrodynamic interactions in colloidal gelation.
    Furukawa A; Tanaka H
    Phys Rev Lett; 2010 Jun; 104(24):245702. PubMed ID: 20867312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrodynamics of colloidal gelation.
    Varga Z; Wang G; Swan J
    Soft Matter; 2015 Dec; 11(46):9009-19. PubMed ID: 26406284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic stability criterion for colloidal gelation under gravity.
    de Graaf J; Torre KW; Poon WCK; Hermes M
    Phys Rev E; 2023 Mar; 107(3-1):034608. PubMed ID: 37072990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian dynamics simulations of shear-induced aggregation of charged colloidal particles in the presence of hydrodynamic interactions.
    Lorenzo T; Marco L
    J Colloid Interface Sci; 2022 Oct; 624():637-649. PubMed ID: 35696787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers.
    Yoshinaga N; Liverpool TB
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):76. PubMed ID: 29926216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Rotne-Prager-Yamakawa approximation for Brownian dynamics in shear flow in bounded, unbounded, and periodic domains.
    Cichocki B; Szymczak P; Żuk PJ
    J Chem Phys; 2021 Mar; 154(12):124905. PubMed ID: 33810690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model.
    Wani YM; Kovakas PG; Nikoubashman A; Howard MP
    J Chem Phys; 2022 Jan; 156(2):024901. PubMed ID: 35032985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning of lubrication correction based on GPR for the coupled DPD-DEM simulation of colloidal suspensions.
    Wang Y; Ouyang J; Wang X
    Soft Matter; 2021 Jun; 17(23):5682-5699. PubMed ID: 34008648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-ranged repulsion.
    Varga Z; Swan J
    Soft Matter; 2016 Sep; 12(36):7670-81. PubMed ID: 27550538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.
    Fiore AM; Swan JW
    J Chem Phys; 2018 Jan; 148(4):044114. PubMed ID: 29390810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions.
    Rex M; Löwen H
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):139-46. PubMed ID: 18791754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Rotne-Prager-Yamakawa approximation for periodic systems in a shear flow.
    Mizerski KA; Wajnryb E; Zuk PJ; Szymczak P
    J Chem Phys; 2014 May; 140(18):184103. PubMed ID: 24832249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic force driven colloidal self-assembly near a solid surface.
    Rahman MM; Williams SJ
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1402-1410. PubMed ID: 34587527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.