BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37740640)

  • 1. Improvement in male pelvis magnetic resonance image contouring following radiologist-delivered training.
    Oar B; Brown A; Newman G; Boles A; Rumley CN; Doyle R; Baines J; Tan A
    J Med Radiat Sci; 2024 Mar; 71(1):114-122. PubMed ID: 37740640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic AI-based contouring of prostate MRI for online adaptive radiotherapy.
    Nachbar M; Lo Russo M; Gani C; Boeke S; Wegener D; Paulsen F; Zips D; Roque T; Paragios N; Thorwarth D
    Z Med Phys; 2024 May; 34(2):197-207. PubMed ID: 37263911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of a contouring atlas on radiographer inter-observer variation in male pelvis radiotherapy.
    Clough A; Chuter R; Hales RB; Parker J; McMahon J; Whiteside L; McHugh L; Davies L; Sanders J; Benson R; Nelder C; McDaid L; Choudhury A; Eccles CL
    J Med Imaging Radiat Sci; 2024 Jun; 55(2):281-288. PubMed ID: 38609834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human factors in the clinical implementation of deep learning-based automated contouring of pelvic organs at risk for MRI-guided radiotherapy.
    Abdulkadir Y; Luximon D; Morris E; Chow P; Kishan AU; Mikaeilian A; Lamb JM
    Med Phys; 2023 Oct; 50(10):5969-5977. PubMed ID: 37646527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest.
    Roach D; Holloway LC; Jameson MG; Dowling JA; Kennedy A; Greer PB; Krawiec M; Rai R; Denham J; De Leon J; Lim K; Berry ME; White RT; Bydder SA; Tan HT; Croker JD; McGrath A; Matthews J; Smeenk RJ; Ebert MA
    J Med Imaging Radiat Oncol; 2019 Apr; 63(2):264-271. PubMed ID: 30609205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences.
    Dowling JA; Sun J; Pichler P; Rivest-Hénault D; Ghose S; Richardson H; Wratten C; Martin J; Arm J; Best L; Chandra SS; Fripp J; Menk FW; Greer PB
    Int J Radiat Oncol Biol Phys; 2015 Dec; 93(5):1144-53. PubMed ID: 26581150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online adaptive MR-guided radiotherapy: Conformity of contour adaptation for prostate cancer, rectal cancer and lymph node oligometastases among radiation therapists and radiation oncologists.
    Rasing MJA; Sikkes GG; Vissers NGPM; Kotte ANTJ; Boudewijn JH; Doornaert PAH; Eppinga WSC; Intven M; Rutgers RHA; Scheeren A; Snoeren LMW; Vlig TB; van der Voort van Zyp JRN; Wijkhuizen LM; van Rossum PSN; Peters M; Jürgenliemk-Schulz IM
    Tech Innov Patient Support Radiat Oncol; 2022 Sep; 23():33-40. PubMed ID: 36090011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients.
    van den Berg I; Savenije MHF; Teunissen FR; van de Pol SMG; Rasing MJA; van Melick HHE; Brink WM; de Boer JCJ; van den Berg CAT; van der Voort van Zyp JRN
    Phys Imaging Radiat Oncol; 2023 Apr; 26():100453. PubMed ID: 37312973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT.
    Hammers JE; Pirozzi S; Lindsay D; Kaidar-Person O; Tan X; Chen RC; Das SK; Mavroidis P
    J Appl Clin Med Phys; 2020 Feb; 21(2):14-25. PubMed ID: 32058663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective International Pilot Study Evaluating the Efficacy of a Self-Guided Contouring Teaching Module With Integrated Feedback for Transitioning From 2D to 3D Treatment Planning.
    Abugideiri M; Schreibmann E; Switchenko J; McDonald MW; Beitler JJ; Curran WJ; Bruner D; Patel P; Tigeneh W; Mijena M; Tian S; Dhabaan A; Esiashvili N; Liu T; Ali AN
    J Glob Oncol; 2019 May; 5():1-16. PubMed ID: 31082303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Prostate Fossa Contouring Instructional Module: Implementation and Evaluation.
    Gunther JR; Liauw SL; Choi S; Mohamed AS; Thaker NG; Fuller CD; Stepaniak CJ; Das P; Golden DW
    J Am Coll Radiol; 2016 Jul; 13(7):835-841.e1. PubMed ID: 27210232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technology assessment of automated atlas based segmentation in prostate bed contouring.
    Hwee J; Louie AV; Gaede S; Bauman G; D'Souza D; Sexton T; Lock M; Ahmad B; Rodrigues G
    Radiat Oncol; 2011 Sep; 6():110. PubMed ID: 21906279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer.
    Gardner SJ; Wen N; Kim J; Liu C; Pradhan D; Aref I; Cattaneo R; Vance S; Movsas B; Chetty IJ; Elshaikh MA
    Phys Med Biol; 2015 Jun; 60(11):4429-47. PubMed ID: 25988718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma.
    Lin L; Dou Q; Jin YM; Zhou GQ; Tang YQ; Chen WL; Su BA; Liu F; Tao CJ; Jiang N; Li JY; Tang LL; Xie CM; Huang SM; Ma J; Heng PA; Wee JTS; Chua MLK; Chen H; Sun Y
    Radiology; 2019 Jun; 291(3):677-686. PubMed ID: 30912722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI prostate contouring is not impaired by the use of a radiotherapy image acquisition set-up. An intra- and inter-observer paired comparative analysis with diagnostic set-up images.
    Sabater S; Pastor-Juan MR; Andres I; López-Martinez L; Lopez-Honrubia V; Tercero-Azorin MI; Sevillano M; Lozano-Setien E; Jimenez-Jimenez E; Berenguer R; Rovirosa A; Castro-Larefors S; Magdalena Marti-Laosa M; Roche O; Martinez-Terol F; Arenas M
    Cancer Radiother; 2021 Apr; 25(2):107-113. PubMed ID: 33423967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospective Image Quality and Lesion Assessment in the Setting of MR-Guided Radiation Therapy of Prostate Cancer on an MR-Linac at 1.5 T: A Comparison to a Standard 3 T MRI.
    Almansour H; Afat S; Fritz V; Schick F; Nachbar M; Thorwarth D; Zips D; Müller AC; Nikolaou K; Othman AE; Wegener D
    Cancers (Basel); 2021 Mar; 13(7):. PubMed ID: 33810410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features.
    Macomber MW; Phillips M; Tarapov I; Jena R; Nori A; Carter D; Folgoc LL; Criminisi A; Nyflot MJ
    Phys Med Biol; 2018 Nov; 63(23):235002. PubMed ID: 30465543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.