These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 3774069)

  • 1. [Inability to establish a single equilibrium value for the angle of a joint and its relation to the hysteretic properties of muscle contraction].
    Kostiukov AI
    Neirofiziologiia; 1986; 18(5):699-701. PubMed ID: 3774069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Hysteretic properties of movements in the elbow joint of unanesthetized cats with various methods of activation of muscle-antagonists].
    Tal'nov AN; Kostiukov AI
    Neirofiziologiia; 1992; 24(3):322-30. PubMed ID: 1513407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neuro-mechanical transducer model for controlling joint rotations and limb movements.
    Laczkó J; Kerry W; Rodolfo L
    Ideggyogy Sz; 2006 Jan; 59(1-2):32-43. PubMed ID: 16491570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contraction dynamics in antagonist muscles.
    Minetti AE
    J Theor Biol; 1994 Aug; 169(3):295-304. PubMed ID: 7967621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The manifestation of the hysteresis effects of muscle contraction in the cortically evoked coactivation of muscle antagonists].
    Tal'nov AN; Kostiukov AI
    Neirofiziologiia; 1991; 23(4):481-4. PubMed ID: 1922566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Multiplicity of values for establishment of equilibrium length of an active muscle].
    Kostiukov AI; Korneev VV; Ivanov AE
    Neirofiziologiia; 1986; 18(4):561-3. PubMed ID: 3762801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonistic activity of one-joint muscles in three-dimensions using non-linear optimisation.
    Jinha A; Ait-Haddou R; Binding P; Herzog W
    Math Biosci; 2006 Jul; 202(1):57-70. PubMed ID: 16697422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical considerations in the modeling of muscle function.
    Andrews JG; Hay JG
    Acta Morphol Neerl Scand; 1983 Sep; 21(3):199-223. PubMed ID: 6637590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle-joint models incorporating activation dynamics, moment-angle, and moment-velocity properties.
    Shue G; Crago PE; Chizeck HJ
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):212-23. PubMed ID: 7868149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dynamics of efferent regulation of muscle contraction. Determination of transition processes: external load--muscle length].
    Kostiukov AI
    Neirofiziologiia; 1985; 17(3):334-43. PubMed ID: 4022182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.
    Pennestrì E; Stefanelli R; Valentini PP; Vita L
    J Biomech; 2007; 40(6):1350-61. PubMed ID: 16824531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An equation to calculate individual muscle contributions to joint stability.
    Potvin JR; Brown SH
    J Biomech; 2005 May; 38(5):973-80. PubMed ID: 15797580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflex regulation of antagonist muscles for control of joint equilibrium position.
    Lan N; Li Y; Sun Y; Yang FS
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):60-71. PubMed ID: 15813407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps.
    Cheng KB; Hubbard M
    J Biomech; 2005 Sep; 38(9):1822-9. PubMed ID: 16023469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of biomechanics and muscle activation strategy in the production of endpoint force patterns in the cat hindlimb.
    Lemay MA; Bhowmik-Stoker M; McConnell GC; Grill WM
    J Biomech; 2007; 40(16):3679-87. PubMed ID: 17692854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the relationship between resultant joint torques and muscular activity.
    Andrews JG
    Med Sci Sports Exerc; 1982; 14(5):361-7. PubMed ID: 7154891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the geometric and mechanical characteristics of the spine musculature to provide rotational stiffness to two spine joints in the neutral posture.
    Brown SH; Potvin JR
    Hum Mov Sci; 2007 Feb; 26(1):113-23. PubMed ID: 17141904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.