BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37740878)

  • 1. An Introductory Overview on Applications of Pyrazoles as Transition Metal Chemosensors.
    Parshad M; Kumar D; Verma V
    J Fluoresc; 2023 Sep; ():. PubMed ID: 37740878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in chemosensors based on pyrazole derivatives.
    Tigreros A; Portilla J
    RSC Adv; 2020 May; 10(33):19693-19712. PubMed ID: 35515469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects.
    Lalitha R; Velmathi S
    J Fluoresc; 2024 Jan; 34(1):15-118. PubMed ID: 37212978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review on Pyrazolines as Colorimetric Fluorescent Chemosensors for Cu
    Mohasin M; Khan SA
    J Fluoresc; 2024 May; ():. PubMed ID: 38789859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Chemosensors Synthesis and Appplication for Trace Level Metal Ions Detection in Aqueous Media: A Review.
    Khan J
    J Fluoresc; 2024 Jan; ():. PubMed ID: 38175458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Thiazole Based Colorimetric and Fluorimetric Chemosensors for the Detection of Heavy Metal Ions.
    Alhamami MAM; Algethami JS; Khan S
    Crit Rev Anal Chem; 2023 Apr; ():1-25. PubMed ID: 37029905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Development in Fluorescent Probes for the Detection of Hg
    Kumar A
    Crit Rev Anal Chem; 2023 Jul; ():1-44. PubMed ID: 37517076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel advanced nanomaterial based on ferrous metal-organic framework and its application as chemosensors for mercury in environmental and biological samples.
    Basaleh AS; Sheta SM
    Anal Bioanal Chem; 2020 May; 412(13):3153-3165. PubMed ID: 32185438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel pyrazole biscoumarin based chemosensors for the selective detection of Cu(2+) and Zn(2+) ions.
    Kandasamy K; Ganesabaskaran S; Pachamuthu MP; Ramanathan A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():184-8. PubMed ID: 25879988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple dihydropyridine-based colorimetric chemosensors for heavy metal ion detection, biological evaluation, molecular docking, and ADMET profiling.
    Hamada WM; El-Nahass MN; Noser AA; Fayed TA; El-Kemary M; Salem MM; Bakr EA
    Sci Rep; 2023 Sep; 13(1):15420. PubMed ID: 37723190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous organic polymers-based fluorescent chemosensors for Fe(III) ions-a functional mimic of siderophores.
    Mohan B; Shanmughan A; Krishna AV; Noushija MK; Umadevi D; Shanmugaraju S
    Front Chem; 2024; 12():1361796. PubMed ID: 38425658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malonyl-based Chemosensors: Selective Detection of Fe
    Kumar M; Gupta N; Singh AP
    Anal Sci; 2020 Jun; 36(6):659-663. PubMed ID: 31761811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two rhodamine-azo based fluorescent probes for recognition of trivalent metal ions: crystal structure elucidation and biological applications.
    Mandal J; Pal K; Ghosh Chowdhury S; Karmakar P; Panja A; Banerjee S; Saha A
    Dalton Trans; 2022 Oct; 51(40):15555-15570. PubMed ID: 36168977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence "Turn-off" Sensing of Iron (III) Ions Utilizing Pyrazoline Based Sensor: Experimental and Computational Study.
    Sharma P; Bhogal S; Mohiuddin I; Yusuf M; Malik AK
    J Fluoresc; 2022 Nov; 32(6):2319-2331. PubMed ID: 36131167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Advances in Diazoles-based Chemosensors for CN- and FDetection.
    Sarmiento JT; Portilla J
    Curr Org Synth; 2023; 20(1):77-95. PubMed ID: 35184705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent metal ion chemosensors via cation exchange reactions of complexes, quantum dots, and metal-organic frameworks.
    Cheng J; Zhou X; Xiang H
    Analyst; 2015 Nov; 140(21):7082-115. PubMed ID: 26375420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemosensors based on N-heterocyclic dyes: advances in sensing highly toxic ions such as CN
    Ríos MC; Bravo NF; Sánchez CC; Portilla J
    RSC Adv; 2021 Oct; 11(54):34206-34234. PubMed ID: 35497277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent development of chromogenic and fluorogenic chemosensors for the detection of arsenic species: Environmental and biological applications.
    Banik D; Manna SK; Mahapatra AK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119047. PubMed ID: 33070013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury Toxicity and Detection Using Chromo-Fluorogenic Chemosensors.
    Bhardwaj V; Nurchi VM; Sahoo SK
    Pharmaceuticals (Basel); 2021 Feb; 14(2):. PubMed ID: 33562543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrene Appendant Triazole-based Chemosensors for Sensing Applications.
    Maddeshiya T; Jaiswal MK; Tamrakar A; Mishra G; Awasthi C; Pandey MD
    Curr Org Synth; 2024; 21(4):421-435. PubMed ID: 37345247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.