These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37741181)

  • 1. QCT-based computational bone strength assessment updated with MRI-derived 'hidden' microporosity.
    McPhee S; Kershaw LE; Daniel CR; Peña Fernández M; Cillán-García E; Taylor SE; Wolfram U
    J Mech Behav Biomed Mater; 2023 Nov; 147():106094. PubMed ID: 37741181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of in vivo fatigue-induced subchondral bone microdamage on the mechanical response of cartilage-bone under a single impact compression.
    Malekipour F; Hitchens PL; Whitton RC; Lee PV
    J Biomech; 2020 Feb; 100():109594. PubMed ID: 31924348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subchondral bone microdamage accumulation in distal metacarpus of Thoroughbred racehorses.
    Whitton RC; Ayodele BA; Hitchens PL; Mackie EJ
    Equine Vet J; 2018 Nov; 50(6):766-773. PubMed ID: 29660153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.
    Lambers FM; Bouman AR; Rimnac CM; Hernandez CJ
    PLoS One; 2013; 8(12):e83662. PubMed ID: 24386247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of subchondral bone microdamage quantification using contrast-enhanced imaging techniques.
    Ayodele BA; Malekipour F; Pagel CN; Mackie EJ; Whitton RC
    J Anat; 2024 Jul; 245(1):58-69. PubMed ID: 38481117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of fatigue microdamage in whole rat femora using contrast-enhanced micro-computed tomography.
    Turnbull TL; Gargac JA; Niebur GL; Roeder RK
    J Biomech; 2011 Sep; 44(13):2395-400. PubMed ID: 21764062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA.
    Dall'Ara E; Pahr D; Varga P; Kainberger F; Zysset P
    Osteoporos Int; 2012 Feb; 23(2):563-72. PubMed ID: 21344244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative relationships between microdamage and cancellous bone strength and stiffness.
    Hernandez CJ; Lambers FM; Widjaja J; Chapa C; Rimnac CM
    Bone; 2014 Sep; 66():205-13. PubMed ID: 24928495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualitative assessment of bone density at the distal articulating surface of the third metacarpal in Thoroughbred racehorses with and without condylar fracture.
    Loughridge AB; Hess AM; Parkin TD; Kawcak CE
    Equine Vet J; 2017 Mar; 49(2):172-177. PubMed ID: 26638772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.
    Leng H; Wang X; Ross RD; Niebur GL; Roeder RK
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):68-75. PubMed ID: 18443659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximal Tibia Bone Stiffness and Strength in HR-pQCT- and QCT-Based Finite Element Models.
    Knowles NK; Whittier DE; Besler BA; Boyd SK
    Ann Biomed Eng; 2021 Sep; 49(9):2389-2398. PubMed ID: 33977411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An exclusion approach for addressing partial volume artifacts with quantititive computed tomography-based finite element modeling of the proximal tibia.
    Kalajahi SMH; Nazemi SM; Johnston JD
    Med Eng Phys; 2020 Feb; 76():95-100. PubMed ID: 31870545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental testing and biomechanical CT analysis of Chinese cadaveric vertebrae with different modeling approaches.
    Wei Y; Feng W; Li G; Li Z; Liu Z; Cheng X; Yang H
    Med Eng Phys; 2021 Jul; 93():8-16. PubMed ID: 34154778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element models predict the location of microdamage in cancellous bone following uniaxial loading.
    Goff MG; Lambers FM; Sorna RM; Keaveny TM; Hernandez CJ
    J Biomech; 2015 Nov; 48(15):4142-4148. PubMed ID: 26522622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling.
    Guha I; Zhang X; Rajapakse CS; Chang G; Saha PK
    Med Phys; 2022 Jun; 49(6):3886-3899. PubMed ID: 35319784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear micro finite element models based on digital volume correlation measurements predict early microdamage in newly formed bone.
    Peña Fernández M; Sasso SJ; McPhee S; Black C; Kanczler J; Tozzi G; Wolfram U
    J Mech Behav Biomed Mater; 2022 Aug; 132():105303. PubMed ID: 35671669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study.
    Keyak JH; Sigurdsson S; Karlsdottir GS; Oskarsdottir D; Sigmarsdottir A; Kornak J; Harris TB; Sigurdsson G; Jonsson BY; Siggeirsdottir K; Eiriksdottir G; Gudnason V; Lang TF
    Bone; 2013 Nov; 57(1):18-29. PubMed ID: 23907032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-animal PET/CT assessment of bone microdamage in ovariectomized rats.
    Li ZC; Jiang SD; Yan J; Jiang LS; Dai LY
    J Nucl Med; 2011 May; 52(5):769-75. PubMed ID: 21498537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography.
    Crawford RP; Cann CE; Keaveny TM
    Bone; 2003 Oct; 33(4):744-50. PubMed ID: 14555280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
    Landrigan MD; Li J; Turnbull TL; Burr DB; Niebur GL; Roeder RK
    Bone; 2011 Mar; 48(3):443-50. PubMed ID: 20951850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.