These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37741181)

  • 21. Influence of aging on mechanical properties of the femoral neck using an inverse method.
    Voumard B; Stefanek P; Pretterklieber M; Pahr D; Zysset P
    Bone Rep; 2022 Dec; 17():101638. PubMed ID: 36407416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential of in vivo MRI-based nonlinear finite-element analysis for the assessment of trabecular bone post-yield properties.
    Zhang N; Magland JF; Rajapakse CS; Bhagat YA; Wehrli FW
    Med Phys; 2013 May; 40(5):052303. PubMed ID: 23635290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical and Microstructural Properties of Subchondral Bone From Three Metacarpophalangeal Joint Sites in Thoroughbred Racehorses.
    Pearce DJ; Hitchens PL; Malekipour F; Ayodele B; Lee PVS; Whitton RC
    Front Vet Sci; 2022; 9():923356. PubMed ID: 35847629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stiffness and energy dissipation across the superficial and deeper third metacarpal subchondral bone in Thoroughbred racehorses under high-rate compression.
    Malekipour F; Whitton CR; Lee PV
    J Mech Behav Biomed Mater; 2018 Sep; 85():51-56. PubMed ID: 29852352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of Bone Fragility in Patients With Multiple Myeloma Using QCT-Based Finite Element Modeling.
    Campbell GM; Peña JA; Giravent S; Thomsen F; Damm T; Glüer CC; Borggrefe J
    J Bone Miner Res; 2017 Jan; 32(1):151-156. PubMed ID: 27454865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation of signal attenuation-based quantitative magnetic resonance imaging with quantitative computed tomographic measurements of subchondral bone mineral density in metacarpophalangeal joints of horses.
    Olive J; d'Anjou MA; Alexander K; Beauchamp G; Theoret CL
    Am J Vet Res; 2010 Apr; 71(4):412-20. PubMed ID: 20367049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical modelling of bone adaptation of the metacarpal subchondral bone in racehorses.
    Hitchens PL; Pivonka P; Malekipour F; Whitton RC
    Biomech Model Mechanobiol; 2018 Jun; 17(3):877-890. PubMed ID: 29344755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
    Turnbull TL; Baumann AP; Roeder RK
    J Biomech; 2014 Sep; 47(12):3135-42. PubMed ID: 25065731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structural and biomechanical basis of the gain and loss of bone strength in women and men.
    Seeman E
    Endocrinol Metab Clin North Am; 2003 Mar; 32(1):25-38. PubMed ID: 12699291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of mean bone densities of three preparations of the distal portion of the equine third metacarpal bone measured by use of quantitative computed tomography.
    Drum MG; Les CM; Park RD; McIlwraith CW; Kawcak CE
    Am J Vet Res; 2008 Jul; 69(7):891-3. PubMed ID: 18593241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation of quantitative computed tomographic subchondral bone density and ash density in horses.
    Drum MG; Les CM; Park RD; Norrdin RW; McIlwraith CW; Kawcak CE
    Bone; 2009 Feb; 44(2):316-9. PubMed ID: 18852072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(2):270-278. PubMed ID: 11207929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis.
    Ramme AJ; Lendhey M; Raya JG; Kirsch T; Kennedy OD
    Osteoarthritis Cartilage; 2016 Oct; 24(10):1776-1785. PubMed ID: 27235904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.
    Brock GR; Kim G; Ingraffea AR; Andrews JC; Pianetta P; van der Meulen MC
    PLoS One; 2013; 8(3):e57942. PubMed ID: 23472121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone.
    Whitton RC; Trope GD; Ghasem-Zadeh A; Anderson GA; Parkin TD; Mackie EJ; Seeman E
    Bone; 2010 Oct; 47(4):826-31. PubMed ID: 20659599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone matrix microdamage and vascular changes characterize bone marrow lesions in the subchondral bone of knee osteoarthritis.
    Muratovic D; Findlay DM; Cicuttini FM; Wluka AE; Lee YR; Kuliwaba JS
    Bone; 2018 Mar; 108():193-201. PubMed ID: 29331302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional confocal images of microdamage in cancellous bone.
    Fazzalari NL; Forwood MR; Manthey BA; Smith K; Kolesik P
    Bone; 1998 Oct; 23(4):373-8. PubMed ID: 9763150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.