These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 37741181)
41. Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution. Fazzalari NL; Kuliwaba JS; Forwood MR Bone; 2002 Dec; 31(6):697-702. PubMed ID: 12531564 [TBL] [Abstract][Full Text] [Related]
42. The importance of intrinsic damage properties to bone fragility: a finite element study. Hardisty MR; Zauel R; Stover SM; Fyhrie DP J Biomech Eng; 2013 Jan; 135(1):011004. PubMed ID: 23363215 [TBL] [Abstract][Full Text] [Related]
43. Bone microdamage, remodeling and bone fragility: how much damage is too much damage? Seref-Ferlengez Z; Kennedy OD; Schaffler MB Bonekey Rep; 2015; 4():644. PubMed ID: 25848533 [TBL] [Abstract][Full Text] [Related]
44. Mapping anisotropy improves QCT-based finite element estimation of hip strength in pooled stance and side-fall load configurations. Panyasantisuk J; Dall'Ara E; Pretterklieber M; Pahr DH; Zysset PK Med Eng Phys; 2018 Sep; 59():36-42. PubMed ID: 30131112 [TBL] [Abstract][Full Text] [Related]
45. Imaging bone microdamage in vivo with positron emission tomography. Li J; Miller MA; Hutchins GD; Burr DB Bone; 2005 Dec; 37(6):819-24. PubMed ID: 16236565 [TBL] [Abstract][Full Text] [Related]
46. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model. Turley SM; Thambyah A; Riggs CM; Firth EC; Broom ND J Anat; 2014 Jun; 224(6):647-58. PubMed ID: 24689513 [TBL] [Abstract][Full Text] [Related]
47. Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study. Choisne J; Valiadis JM; Travert C; Kolta S; Roux C; Skalli W J Mech Behav Biomed Mater; 2018 Nov; 87():190-196. PubMed ID: 30077078 [TBL] [Abstract][Full Text] [Related]
48. The relationship between microstructure, stiffness and compressive fatigue life of equine subchondral bone. Martig S; Hitchens PL; Lee PVS; Whitton RC J Mech Behav Biomed Mater; 2020 Jan; 101():103439. PubMed ID: 31557658 [TBL] [Abstract][Full Text] [Related]
49. Development of a fluorescent light technique for evaluating microdamage in bone subjected to fatigue loading. Huja SS; Hasan MS; Pidaparti R; Turner CH; Garetto LP; Burr DB J Biomech; 1999 Nov; 32(11):1243-9. PubMed ID: 10541076 [TBL] [Abstract][Full Text] [Related]
50. Microdamage in bone: implications for fracture, repair, remodeling, and adaptation. Donahue SW; Galley SA Crit Rev Biomed Eng; 2006; 34(3):215-71. PubMed ID: 16930125 [TBL] [Abstract][Full Text] [Related]
51. Mechanical failure begins preferentially near resorption cavities in human vertebral cancellous bone under compression. Slyfield CR; Tkachenko EV; Fischer SE; Ehlert KM; Yi IH; Jekir MG; O'Brien RG; Keaveny TM; Hernandez CJ Bone; 2012 Jun; 50(6):1281-7. PubMed ID: 22426306 [TBL] [Abstract][Full Text] [Related]
52. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone. Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150 [TBL] [Abstract][Full Text] [Related]
53. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Macneil JA; Boyd SK Bone; 2008 Jun; 42(6):1203-13. PubMed ID: 18358799 [TBL] [Abstract][Full Text] [Related]
54. Influence of bone lesion location on femoral bone strength assessed by MRI-based finite-element modeling. Rajapakse CS; Gupta N; Evans M; Alizai H; Shukurova M; Hong AL; Cruickshank NJ; Tejwani N; Egol K; Honig S; Chang G Bone; 2019 May; 122():209-217. PubMed ID: 30851438 [TBL] [Abstract][Full Text] [Related]
55. Finite-Element Analysis of Bone Stresses on Primary Impact in a Large-Animal Model: The Distal End of the Equine Third Metacarpal. McCarty CA; Thomason JJ; Gordon KD; Burkhart TA; Milner JS; Holdsworth DW PLoS One; 2016; 11(7):e0159541. PubMed ID: 27459189 [TBL] [Abstract][Full Text] [Related]
56. Biomechanical MRI detects reduced bone strength in subjects with vertebral fractures. Gao X; Din RU; Cheng X; Yang H Bone; 2023 Aug; 173():116810. PubMed ID: 37207989 [TBL] [Abstract][Full Text] [Related]
57. The predictive ability of a QCT-FE model of the proximal femoral stiffness under multiple load cases is strongly influenced by experimental uncertainties. Amini M; Reisinger A; Synek A; Hirtler L; Pahr D J Mech Behav Biomed Mater; 2023 Mar; 139():105664. PubMed ID: 36657193 [TBL] [Abstract][Full Text] [Related]
58. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. Dall'Ara E; Schmidt R; Pahr D; Varga P; Chevalier Y; Patsch J; Kainberger F; Zysset P J Biomech; 2010 Aug; 43(12):2374-80. PubMed ID: 20462582 [TBL] [Abstract][Full Text] [Related]
59. Aging and matrix microdamage accumulation in human compact bone. Schaffler MB; Choi K; Milgrom C Bone; 1995 Dec; 17(6):521-25. PubMed ID: 8835305 [TBL] [Abstract][Full Text] [Related]
60. Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model. Kosmopoulos V; Keller TS Med Eng Phys; 2008 Jul; 30(6):725-32. PubMed ID: 17881275 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]