These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37741214)

  • 1. Hanford low-activity waste vitrification: A review.
    Marcial J; Riley BJ; Kruger AA; Lonergan CE; Vienna JD
    J Hazard Mater; 2024 Jan; 461():132437. PubMed ID: 37741214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of technetium in nuclear waste vitrification processes.
    Pegg IL
    J Radioanal Nucl Chem; 2015; 305(1):287-292. PubMed ID: 26224991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Enabled Models to Predict Sulfur Solubility in Nuclear Waste Glasses.
    Xu X; Han T; Huang J; Kruger AA; Kumar A; Goel A
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53375-53387. PubMed ID: 34516090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The legacy of weapons grade plutonium production: Health status of Hanford complex workers who manage the waste.
    Cherry D; Friedman E; Vincent M; Maier A
    Toxicol Ind Health; 2021 May; 37(5):260-269. PubMed ID: 33853462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment of Hanford medium-curie wastes by fractional crystallization.
    Nassif L; Dumont G; Alysouri H; Rousseau RW
    Environ Sci Technol; 2008 Jul; 42(13):4940-5. PubMed ID: 18678030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Quantification of Technetium Species in Hanford Waste Tank AN-102.
    Chatterjee S; Holfeltz VE; Hall GB; Johnson IE; Walter ED; Lee S; Reinhart B; Lukens WW; Machara NP; Levitskaia TG
    Anal Chem; 2020 Oct; 92(20):13961-13970. PubMed ID: 32959648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-viking Swedish hillfort glass: A prospective long-term alteration analogue for vitrified nuclear waste.
    Weaver JL; Pearce CI; Sjöblom R; McCloy JS; Miller M; Varga T; Arey BW; Conroy MA; Peeler DK; Koestler RJ; DePriest PT; Vicenzi EP; Hjärthner-Holdar E; Ogenhall E; Kruger AA
    Int J Appl Glass Sci; 2018; 9():. PubMed ID: 31093322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.
    Peterson RA; Buck EC; Chun J; Daniel RC; Herting DL; Ilton ES; Lumetta GJ; Clark SB
    Environ Sci Technol; 2018 Jan; 52(2):381-396. PubMed ID: 29215277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One perspective on stakeholder involvement at Hanford.
    Martin T
    Health Phys; 2011 Nov; 101(5):536-8. PubMed ID: 21979534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloid formation in Hanford sediments reacted with simulated tank waste.
    Mashal K; Harsh JB; Flury M; Felmy AR; Zhao H
    Environ Sci Technol; 2004 Nov; 38(21):5750-6. PubMed ID: 15575296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution.
    Xu H; Gong W; Syltebo L; Lutze W; Pegg IL
    J Hazard Mater; 2014 Aug; 278():34-9. PubMed ID: 24952220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of Raman-Interfering Polyoxoanions for Process Analysis: Comparison of Different Chemometric Models and a Demonstration on Real Hanford Waste.
    Tse P; Shafer J; Bryan SA; Lines AM
    Environ Sci Technol; 2021 Oct; 55(19):12943-12950. PubMed ID: 34529406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitrified metal finishing wastes I. Composition, density and chemical durability.
    Bingham PA; Hand RJ
    J Hazard Mater; 2005 Mar; 119(1-3):125-33. PubMed ID: 15752857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How the United States plans to trap its biggest stash of nuclear-weapons waste in glass.
    Tollefson J
    Nature; 2017 Oct; 550(7675):172-173. PubMed ID: 29022927
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.
    Wang G; Um W; Cantrell KJ; Snyder MMV; Bowden ME; Triplett MB; Buck EC
    Chemosphere; 2017 Oct; 185():171-177. PubMed ID: 28692884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A case for molecular recognition in nuclear separations: sulfate separation from nuclear wastes.
    Moyer BA; Custelcean R; Hay BP; Sessler JL; Bowman-James K; Day VW; Kang SO
    Inorg Chem; 2013 Apr; 52(7):3473-90. PubMed ID: 23134587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.
    Reynolds JG; Huber HJ; Cooke GA; Pestovich JA
    J Hazard Mater; 2014 Aug; 278():203-10. PubMed ID: 24976128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.
    Dixon DR; Schweiger MJ; Riley BJ; Pokorny R; Hrma P
    Environ Sci Technol; 2015 Jul; 49(14):8856-63. PubMed ID: 26111202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic model for uranium release from hanford site tank residual waste.
    Cantrell KJ; Deutsch WJ; Lindberg MJ
    Environ Sci Technol; 2011 Feb; 45(4):1473-80. PubMed ID: 21268633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of ecological resources at operating facilities at contaminated sites: The Department of Energy's Hanford Site as a case study.
    Burger J; Gochfeld M; Kosson DS; Brown KG; Salisbury JA; Jeitner C
    Environ Res; 2019 Mar; 170():452-462. PubMed ID: 30640079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.