These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3774125)

  • 21. Calcium-dependent inhibition of synaptosomal serotonin transport by the alpha 2-adrenoceptor agonist 5-bromo-N-[4,5-dihydro-1H-imidazol-2-yl]-6-quinoxalinamine (UK14304).
    Ansah TA; Ramamoorthy S; Montañez S; Daws LC; Blakely RD
    J Pharmacol Exp Ther; 2003 Jun; 305(3):956-65. PubMed ID: 12626658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of blood platelets as a model for CNS response: comparative effects of caffeine on 5-HT uptake and release mechanisms in rat platelets and rat brain serotonin neurons.
    Chou DT; Cuzzone H; Hirsh KR
    Life Sci; 1983 Sep; 33(12):1149-56. PubMed ID: 6888169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of synaptosomal serotonin uptake by Ketalar.
    Martin DC; Adams RJ; Watkins CA
    Res Commun Chem Pathol Pharmacol; 1988 Oct; 62(1):129-32. PubMed ID: 3205973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the mechanism by which extracellular sodium depletion causes 5-hydroxytryptamine release from rat brain synaptosomes.
    Collard KJ
    Biochim Biophys Acta; 1989 Sep; 984(3):319-25. PubMed ID: 2789079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The filum terminale of the frog spinal cord, a nontransformed glial preparation: II. Uptake of serotonin.
    Ritchie T; Glusman S; Haber B
    Neurochem Res; 1981 Apr; 6(4):441-52. PubMed ID: 6973701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study and partial characterization of multi-uptake systems for gamma-aminobutyric acid.
    Wood JD; Sidhu HS
    J Neurochem; 1987 Oct; 49(4):1202-8. PubMed ID: 2887634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uptake of gamma-aminobutyric acid and glycine by synaptosomes from postmortem human brain.
    Hardy JA; Barton A; Lofdahl E; Cheetham SC; Johnston GA; Dodd PR
    J Neurochem; 1986 Aug; 47(2):460-7. PubMed ID: 3734788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium-dependent accumulation of 5-hydroxytryptamine by rat blood platelets.
    Sneddon JM
    Br J Pharmacol; 1969 Nov; 37(3):680-8. PubMed ID: 5348470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A kinetic and pharmacologic analysis of 5-hydroxytryptamine transport by human platelets and platelet storage granules: comparison with central serotonergic neurons.
    Stahl SM; Meltzer HY
    J Pharmacol Exp Ther; 1978 Apr; 205(1):118-32. PubMed ID: 633077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of the influences of sodium, catecholamine and tricyclic antidepressent drug on the uptake of [3H]5-hydroxytryptamine by rat brain synaptosomes.
    Nomura Y; Tanaka Y; segawa T
    Brain Res; 1975 Dec; 100(3):705-9. PubMed ID: 1192204
    [No Abstract]   [Full Text] [Related]  

  • 31. Mechanistic analyses of ion dependences in a high-affinity human serotonin transport system in transfected murine fibroblast cells.
    Chang AS; Lam DM
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):903-13. PubMed ID: 9660901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition by nitric oxide of the uptake of [3H]serotonin into rat brain synaptosomes.
    Asano S; Matsuda T; Nakasu Y; Maeda S; Nogi H; Baba A
    Jpn J Pharmacol; 1997 Oct; 75(2):123-8. PubMed ID: 9414026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro experiments on the metabolism, uptake and release of 5-hydroxytryptamine in bovine retina.
    Osborne NN
    Brain Res; 1980 Feb; 184(2):283-97. PubMed ID: 7353157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain.
    Nayak SV; Rondé P; Spier AD; Lummis SC; Nichols RA
    Neuroscience; 1999; 91(1):107-17. PubMed ID: 10336063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor.
    Thomas DR; Nelson DR; Johnson AM
    Psychopharmacology (Berl); 1987; 93(2):193-200. PubMed ID: 2962217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic evidence that the sodium-dependent high-affinity and the sodium-independent low-affinity dopamine uptake are mediated by one carrier.
    Berndt C; Henke W; Dubiel W; Gross J
    Biomed Biochim Acta; 1991; 50(9):1093-7. PubMed ID: 1796901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LY367265, an inhibitor of the 5-hydroxytryptamine transporter and 5-hydroxytryptamine(2A) receptor antagonist: a comparison with the antidepressant, nefazodone.
    Pullar IA; Carney SL; Colvin EM; Lucaites VL; Nelson DL; Wedley S
    Eur J Pharmacol; 2000 Oct; 407(1-2):39-46. PubMed ID: 11050288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uptake of piperidine and pipecolic acid by synaptosomes from mouse brain.
    Nomura Y; Schmidt-Glenewinkel T; Giacobini E
    Neurochem Res; 1980 Nov; 5(11):1163-73. PubMed ID: 7464982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes.
    Fontana G; Rogowski RS; Blaustein MP
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):349-64. PubMed ID: 7666363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [3H]nitrobenzylthioinosine binding to the guinea pig CNS nucleoside transport system: a pharmacological characterization.
    Hammond JR; Clanachan AS
    J Neurochem; 1984 Dec; 43(6):1582-92. PubMed ID: 6491669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.