These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37741281)

  • 41. Neural and Behavioral Evidence for an Online Resetting Process in Visual Working Memory.
    Balaban H; Luria R
    J Neurosci; 2017 Feb; 37(5):1225-1239. PubMed ID: 28011745
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Parietal-Occipital Interactions Underlying Control- and Representation-Related Processes in Working Memory for Nonspatial Visual Features.
    Gosseries O; Yu Q; LaRocque JJ; Starrett MJ; Rose NS; Cowan N; Postle BR
    J Neurosci; 2018 May; 38(18):4357-4366. PubMed ID: 29636395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gradients of functional organization in posterior parietal cortex revealed by visual attention, visual short-term memory, and intrinsic functional connectivity.
    Lefco RW; Brissenden JA; Noyce AL; Tobyne SM; Somers DC
    Neuroimage; 2020 Oct; 219():117029. PubMed ID: 32526387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. No evidence for enhancements to visual working memory with transcranial direct current stimulation to prefrontal or posterior parietal cortices.
    Robison MK; McGuirk WP; Unsworth N
    Behav Neurosci; 2017 Aug; 131(4):277-288. PubMed ID: 28714714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The neural correlates of visual working memory encoding: a time-resolved fMRI study.
    Todd JJ; Han SW; Harrison S; Marois R
    Neuropsychologia; 2011 May; 49(6):1527-36. PubMed ID: 21315091
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory.
    Tseng P; Chang YT; Chang CF; Liang WK; Juan CH
    Sci Rep; 2016 Aug; 6():32138. PubMed ID: 27573864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Linear and nonlinear prefrontal and parietal activity during multiple-item working memory.
    Yi Y; Leung HC
    Neuroimage; 2011 Aug; 57(3):1281-91. PubMed ID: 21596144
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Posterior Parietal Cortex Dysfunction Is Central to Working Memory Storage and Broad Cognitive Deficits in Schizophrenia.
    Hahn B; Robinson BM; Leonard CJ; Luck SJ; Gold JM
    J Neurosci; 2018 Sep; 38(39):8378-8387. PubMed ID: 30104335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional topography of working memory for face or voice identity.
    Rämä P; Courtney SM
    Neuroimage; 2005 Jan; 24(1):224-34. PubMed ID: 15588614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Representation of visual numerosity information during working memory in humans: An fMRI decoding study.
    Pennock IML; Schmidt TT; Zorbek D; Blankenburg F
    Hum Brain Mapp; 2021 Jun; 42(9):2778-2789. PubMed ID: 33694232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Working memory load influences perceptual ambiguity by competing for fronto-parietal attentional resources.
    Intaitė M; Duarte JV; Castelo-Branco M
    Brain Res; 2016 Nov; 1650():142-151. PubMed ID: 27590722
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reward and loss incentives improve spatial working memory by shaping trial-by-trial posterior frontoparietal signals.
    Cho YT; Moujaes F; Schleifer CH; Starc M; Ji JL; Santamauro N; Adkinson B; Kolobaric A; Flynn M; Krystal JH; Murray JD; Repovs G; Anticevic A
    Neuroimage; 2022 Jul; 254():119139. PubMed ID: 35346841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A neural system for human visual working memory.
    Ungerleider LG; Courtney SM; Haxby JV
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):883-90. PubMed ID: 9448255
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of parietal cortex in verbal working memory.
    Jonides J; Schumacher EH; Smith EE; Koeppe RA; Awh E; Reuter-Lorenz PA; Marshuetz C; Willis CR
    J Neurosci; 1998 Jul; 18(13):5026-34. PubMed ID: 9634568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Perceptual Learning beyond Perception: Mnemonic Representation in Early Visual Cortex and Intraparietal Sulcus.
    Jia K; Li Y; Gong M; Huang H; Wang Y; Li S
    J Neurosci; 2021 May; 41(20):4476-4486. PubMed ID: 33811151
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans.
    Lee J; Jung M; Lustig N; Lee JH
    Hum Brain Mapp; 2023 Apr; 44(5):2018-2038. PubMed ID: 36637109
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temporal-Order-Based Attentional Priority Modulates Mnemonic Representations in Parietal and Frontal Cortices.
    Yu Q; Shim WM
    Cereb Cortex; 2019 Jul; 29(7):3182-3192. PubMed ID: 30124789
    [TBL] [Abstract][Full Text] [Related]  

  • 58. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory.
    Koch G; Oliveri M; Torriero S; Carlesimo GA; Turriziani P; Caltagirone C
    Neuroimage; 2005 Jan; 24(1):34-9. PubMed ID: 15588594
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dissociable causal roles for left and right parietal cortex in controlling attentional biases from the contents of working memory.
    Kiyonaga A; Korb FM; Lucas J; Soto D; Egner T
    Neuroimage; 2014 Oct; 100():200-5. PubMed ID: 24945665
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active maintenance in prefrontal area 46 creates distractor-resistant memory.
    Sakai K; Rowe JB; Passingham RE
    Nat Neurosci; 2002 May; 5(5):479-84. PubMed ID: 11953754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.