BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37741369)

  • 1. Towards an environmentally friendly power and hydrogen co-generation system: Integration of solar-based sorption enhanced gasification with in-situ CO
    Khosravi S; Khoshbakhti Saray R; Neshat E; Arabkoohsar A
    Chemosphere; 2023 Dec; 343():140226. PubMed ID: 37741369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.
    Yan L; He B
    Bioresour Technol; 2017 Jul; 235():113-121. PubMed ID: 28365338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle.
    Ren J; Xu C; Qian Z; Huang W; Wang B
    Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic gasification of biomass (Miscanthus) enhanced by CO
    Zamboni I; Debal M; Matt M; Girods P; Kiennemann A; Rogaume Y; Courson C
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22253-22266. PubMed ID: 26996917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic assessment and techno-economic analysis of a liquid indium-based chemical looping system for biomass gasification.
    Sarafraz MM; Christo FC
    Energy Convers Manag; 2020 Dec; 225():113428. PubMed ID: 32958972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of biomass integrated gasification combined cycle power systems: Performance analysis.
    Zang G; Tejasvi S; Ratner A; Lora ES
    Bioresour Technol; 2018 May; 255():246-256. PubMed ID: 29427876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning approach to predict the biofuel production via biomass gasification and natural gas integrating to develop a low-carbon and environmental-friendly design: Thermodynamic-conceptual assessment.
    Xia J; Yan G; Abed AM; Nag K; Galal AM; Deifalla A; Li J
    Chemosphere; 2023 Sep; 336():138985. PubMed ID: 37247675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-emission and energetically efficient co-gasification of coal by incorporating plastic waste: A modeling study.
    Hasanzadeh R; Mojaver P; Azdast T; Chitsaz A; Park CB
    Chemosphere; 2022 Jul; 299():134408. PubMed ID: 35341769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concept design, technical performance, and GHG emissions analysis of petroleum coke direct chemical looping hydrogen highly integrated with gasification for methanol production process.
    Xiang D; Li P; Liu L
    Sci Total Environ; 2022 Sep; 838(Pt 4):156652. PubMed ID: 35697223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance and Cost Analysis of Natural Gas Combined Cycle Plants with Chemical Looping Combustion.
    Oh DH; Lee CH; Lee JC
    ACS Omega; 2021 Aug; 6(32):21043-21058. PubMed ID: 34423212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Process Combining Fe-Based Chemical Looping and Biomass Pyrolysis for Cogeneration of Hydrogen, Biochar, Bio-Oil and Electricity with In-Suit CO
    Zhou X; Jin H; Li N; Ma X; Ma Z; Lu P; Yao X; Chen S
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy and exergy analyses of an integrated gasification combined cycle power plant with CO2 capture using hot potassium carbonate solvent.
    Li S; Jin H; Gao L; Mumford KA; Smith K; Stevens G
    Environ Sci Technol; 2014 Dec; 48(24):14814-21. PubMed ID: 25389800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Assessment of Gasification Based Coal Power Plants with Various CO
    Mukherjee S; Kumar P; Hosseini A; Yang A; Fennell P
    Energy Fuels; 2014 Feb; 28(2):1028-1040. PubMed ID: 24578590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction in environmental CO
    Hai T; Ali MA; Alizadeh A; Almojil SF; Almohana AI; Alali AF
    Chemosphere; 2023 Apr; 319():137847. PubMed ID: 36657576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analyses of a biomass-coal co-gasification power generation system.
    Yan L; Yue G; He B
    Bioresour Technol; 2016 Apr; 205():133-41. PubMed ID: 26826573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Integration of a Flexible Calcium Looping CO
    Arias B; Criado YA; Abanades JC
    ACS Omega; 2020 Mar; 5(10):4844-4852. PubMed ID: 32201770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant.
    Hosseini R; Babaelahi M; Rafat E
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption-enhanced gasification of municipal solid waste for hydrogen production: a comparative techno-economic analysis using limestone, dolomite and doped limestone.
    Santos MPS; Hanak DP
    Biomass Convers Biorefin; 2022 Jun; ():1-16. PubMed ID: 35761819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exergy-Based Analysis and Optimization of an Integrated Solar Combined-Cycle Power Plant.
    Elmorsy L; Morosuk T; Tsatsaronis G
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waste to energy efficiency improvements: Integration with solar thermal energy.
    Mendecka B; Lombardi L; Gladysz P
    Waste Manag Res; 2019 Apr; 37(4):419-434. PubMed ID: 30848718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.