These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37741414)
1. Environmental impact and optimization suggestions of pig manure and wastewater treatment systems from a life cycle perspective. Liu B; Zhou H; Li L; Ai J; He H; Yu J; Li P; Zhang W Sci Total Environ; 2023 Dec; 905():167262. PubMed ID: 37741414 [TBL] [Abstract][Full Text] [Related]
2. Environmental impacts and optimizing strategies of municipal sludge treatment and disposal routes in China based on life cycle analysis. Zhou H; Wei L; Wang D; Zhang W Environ Int; 2022 Aug; 166():107378. PubMed ID: 35780685 [TBL] [Abstract][Full Text] [Related]
3. The Minderoo-Monaco Commission on Plastics and Human Health. Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097 [TBL] [Abstract][Full Text] [Related]
4. Environmental assessment of energy production from anaerobic digestion of pig manure at medium-scale using life cycle assessment. Ramírez-Islas ME; Güereca LP; Sosa-Rodriguez FS; Cobos-Peralta MA Waste Manag; 2020 Feb; 102():85-96. PubMed ID: 31669678 [TBL] [Abstract][Full Text] [Related]
5. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment. Remy C; Lesjean B; Waschnewski J Water Sci Technol; 2013; 67(1):63-73. PubMed ID: 23128622 [TBL] [Abstract][Full Text] [Related]
6. Integrating dairy manure for enhanced resource recovery at a WRRF: Environmental life cycle and pilot-scale analyses. Bryant C; Coats ER Water Environ Res; 2021 Oct; 93(10):2034-2050. PubMed ID: 33877720 [TBL] [Abstract][Full Text] [Related]
7. Environmental life cycle comparisons of pig farming integrated with anaerobic digestion and algae-based wastewater treatment. Wu W; Cheng LC; Chang JS J Environ Manage; 2020 Jun; 264():110512. PubMed ID: 32250920 [TBL] [Abstract][Full Text] [Related]
8. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective. De Vries JW; Vinken TM; Hamelin L; De Boer IJ Bioresour Technol; 2012 Dec; 125():239-48. PubMed ID: 23026340 [TBL] [Abstract][Full Text] [Related]
9. Towards a comprehensive greenhouse gas emissions inventory for biosolids. Alvarez-Gaitan JP; Short MD; Lundie S; Stuetz R Water Res; 2016 Jun; 96():299-307. PubMed ID: 27061153 [TBL] [Abstract][Full Text] [Related]
10. Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment. Li Y; Manandhar A; Li G; Shah A Waste Manag; 2018 Jun; 76():294-305. PubMed ID: 29571569 [TBL] [Abstract][Full Text] [Related]
11. Comparative assessment of sewage sludge disposal alternatives in Mashhad: a life cycle perspective. Rostami F; Tafazzoli SM; Aminian ST; Avami A Environ Sci Pollut Res Int; 2020 Jan; 27(1):315-333. PubMed ID: 31786757 [TBL] [Abstract][Full Text] [Related]
12. Synergistic effects of biochar derived from different sources on greenhouse gas emissions and microplastics mitigation during sewage sludge composting. Zhou Y; Zhao H; Lu Z; Ren X; Zhang Z; Wang Q Bioresour Technol; 2023 Nov; 387():129556. PubMed ID: 37517712 [TBL] [Abstract][Full Text] [Related]
13. Resource recovery from pig manure via an integrated approach: A technical and economic assessment for full-scale applications. De Vrieze J; Colica G; Pintucci C; Sarli J; Pedizzi C; Willeghems G; Bral A; Varga S; Prat D; Peng L; Spiller M; Buysse J; Colsen J; Benito O; Carballa M; Vlaeminck SE Bioresour Technol; 2019 Jan; 272():582-593. PubMed ID: 30352731 [TBL] [Abstract][Full Text] [Related]
14. Exploring the environmental consequences of roadside grass as a biogas feedstock in Northwest Europe. Ravi R; de Souza MF; Adriaens A; Vingerhoets R; Luo H; Van Dael M; Meers E J Environ Manage; 2023 Oct; 344():118538. PubMed ID: 37406494 [TBL] [Abstract][Full Text] [Related]
15. Life cycle energy use and greenhouse gas emissions for a novel algal-osmosis membrane system versus conventional advanced potable water reuse processes: Part I. Lugo A; Bandara GLCL; Xu X; Penteado de Almeida J; Abeysiriwardana-Arachchige ISA; Nirmalakhandan N; Xu P J Environ Manage; 2023 Apr; 331():117293. PubMed ID: 36657205 [TBL] [Abstract][Full Text] [Related]
16. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
17. Life cycle assessment of sewage sludge management: a review. Yoshida H; Christensen TH; Scheutz C Waste Manag Res; 2013 Nov; 31(11):1083-101. PubMed ID: 24061046 [TBL] [Abstract][Full Text] [Related]
18. [Comparison of Carbon Emissions in Different Treatment and Disposal Process Routes of Municipal Sludge]. Li ZK; Zhang LQ; Du ZW; Feng L; Liu YZ Huan Jing Ke Xue; 2023 Feb; 44(2):1181-1190. PubMed ID: 36775640 [TBL] [Abstract][Full Text] [Related]
19. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions. Pang L; Ge L; Yang P; He H; Zhang H Bioresour Technol; 2018 May; 255():16-21. PubMed ID: 29414162 [TBL] [Abstract][Full Text] [Related]
20. Life cycle assessment of sewage sludge treatment and disposal technologies based on carbon emissions and environmental impacts. Huang D; Wu Y; Zhang L; Tang Y; Liu C; Zhang R; Wang Y; Gao Y Environ Technol; 2024 May; ():1-17. PubMed ID: 38820568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]