BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37741485)

  • 1. Protective effect of thymoquinone on glycation of human myoglobin induced by d-ribose.
    Liu JJ; Wang ZY; Jiang BB; Gao SQ; Lin YW
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127016. PubMed ID: 37741485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the Protein Glycation Sites in Human Myoglobin as Rapidly Induced by d-Ribose.
    Liu JJ; You Y; Gao SQ; Tang S; Chen L; Wen GB; Lin YW
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochemical thymoquinone prevents hemoglobin glycoxidation and protofibrils formation: A biophysical aspect.
    Ishtikhar M; Siddiqui Z; Ahmad A; Ashraf JM; Arshad M; Doctor N; Al-Kheraif AA; Zamzami MA; Al-Thawadi SM; Kim J; Khan RH
    Int J Biol Macromol; 2021 Nov; 190():508-519. PubMed ID: 34481855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. d-Ribose contributes to the glycation of serum protein.
    Chen Y; Yu L; Wang Y; Wei Y; Xu Y; He T; He R
    Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2285-2292. PubMed ID: 31085227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of bovine serum albumin glycation by ribose and fructose in vitro and in vivo.
    Mou L; Hu P; Cao X; Chen Y; Xu Y; He T; Wei Y; He R
    Biochim Biophys Acta Mol Basis Dis; 2022 Jan; 1868(1):166283. PubMed ID: 34601015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonenzymatic glycosylation of isolated human immunoglobulin-G by D-ribose.
    Ahmad S; Al-Shaghdali K; Rehman S; Khan MY; Rafi Z; Faisal M; Alatar AA; Tahir IK; Khan S; Ahmad S; Shahab U
    Cell Biochem Funct; 2022 Jul; 40(5):526-534. PubMed ID: 35707967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteasomal degradation of glycated proteins depends on substrate unfolding: Preferred degradation of moderately modified myoglobin.
    Raupbach J; Ott C; Koenig J; Grune T
    Free Radic Biol Med; 2020 May; 152():516-524. PubMed ID: 31760091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Metformin--an inhibitor of early stages of protein glycation].
    Bujak-Gizycka B; Suski M; Olszanecki R; Madej J; Korbut R
    Folia Med Cracov; 2009; 50(3-4):21-33. PubMed ID: 21853868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maillard Proteomics: Opening New Pages.
    Soboleva A; Schmidt R; Vikhnina M; Grishina T; Frolov A
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29231845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characteristics and improved in vitro hepatoprotective activities of Maillard reaction products of decapeptide IVTNWDDMEK and ribose.
    Han JR; Du YN; Song L; Song YK; Yan JN; Jiang XY; Wu HT; Zhu BW
    J Food Sci; 2021 Sep; 86(9):4001-4016. PubMed ID: 34318481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biochemical & biophysical study on in-vitro anti-glycating potential of iridin against d-Ribose modified BSA.
    Nabi R; Alvi SS; Shah MS; Ahmad S; Faisal M; Alatar AA; Khan MS
    Arch Biochem Biophys; 2020 Jun; 686():108373. PubMed ID: 32325089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the Site-Specific Myoglobin Modifications in the Melibiose-Derived Novel Advanced Glycation End-Product.
    Gostomska-Pampuch K; Wiśniewski JR; Sowiński K; Gruszecki WI; Gamian A; Staniszewska M
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (R)-α-Lipoic acid inhibits fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro.
    Ghelani H; Razmovski-Naumovski V; Pragada RR; Nammi S
    BMC Complement Altern Med; 2018 Jan; 18(1):13. PubMed ID: 29334926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies.
    Khalifah RG; Todd P; Booth AA; Yang SX; Mott JD; Hudson BG
    Biochemistry; 1996 Apr; 35(15):4645-54. PubMed ID: 8664253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.
    Sroga GE; Siddula A; Vashishth D
    PLoS One; 2015; 10(2):e0117240. PubMed ID: 25679213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An
    Khanam A; Alouffi S; Rehman S; Ansari IA; Shahab U; Ahmad S
    J Biomol Struct Dyn; 2021 Sep; 39(14):5209-5223. PubMed ID: 32772827
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Kinoshita S; Mera K; Ichikawa H; Shimasaki S; Nagai M; Taga Y; Iijima K; Hattori S; Fujiwara Y; Shirakawa JI; Nagai R
    Oxid Med Cell Longev; 2019; 2019():9073451. PubMed ID: 31583049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HCD Fragmentation of Glycated Peptides.
    Keilhauer EC; Geyer PE; Mann M
    J Proteome Res; 2016 Aug; 15(8):2881-90. PubMed ID: 27425404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of protein glycation, glycated peptides, and glycation free adducts.
    Thornalley PJ
    Perit Dial Int; 2005; 25(6):522-33. PubMed ID: 16419322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation of Glucose-Induced Myoglobin Glycation and the Formation of Advanced Glycation End Products (AGEs) by (R)-α-Lipoic Acid In Vitro.
    Ghelani H; Razmovski-Naumovski V; Pragada RR; Nammi S
    Biomolecules; 2018 Feb; 8(1):. PubMed ID: 29419812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.