BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37741578)

  • 1. Additional glucoamylase genes increase ethanol productivity on rice and potato waste streams by a recombinant amylolytic yeast.
    Cripwell RA; My R; Treu L; Campanaro S; Favaro L; van Zyl WH; Viljoen-Bloom M
    Bioresour Technol; 2023 Nov; 388():129787. PubMed ID: 37741578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of industrial amylolytic yeast strains for the production of bioethanol from broken rice.
    Myburgh MW; Cripwell RA; Favaro L; van Zyl WH
    Bioresour Technol; 2019 Dec; 294():122222. PubMed ID: 31683453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of industrial
    Cripwell RA; Rose SH; Favaro L; van Zyl WH
    Biotechnol Biofuels; 2019; 12():201. PubMed ID: 31452682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases.
    Favaro L; Viktor MJ; Rose SH; Viljoen-Bloom M; van Zyl WH; Basaglia M; Cagnin L; Casella S
    Biotechnol Bioeng; 2015 Sep; 112(9):1751-60. PubMed ID: 25786804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges.
    Cripwell RA; Favaro L; Viljoen-Bloom M; van Zyl WH
    Biotechnol Adv; 2020; 42():107579. PubMed ID: 32593775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations.
    Sakwa L; Cripwell RA; Rose SH; Viljoen-Bloom M
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 30085077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of bioethanol from multiple waste streams of rice milling.
    Favaro L; Cagnin L; Basaglia M; Pizzocchero V; van Zyl WH; Casella S
    Bioresour Technol; 2017 Nov; 244(Pt 1):151-159. PubMed ID: 28779666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural
    Gronchi N; De Bernardini N; Cripwell RA; Treu L; Campanaro S; Basaglia M; Foulquié-Moreno MR; Thevelein JM; Van Zyl WH; Favaro L; Casella S
    Front Microbiol; 2021; 12():768562. PubMed ID: 35126325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating and engineering Saccharomyces cerevisiae promoters for increased amylase expression and bioethanol production from raw starch.
    Myburgh MW; Rose SH; Viljoen-Bloom M
    FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32785598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases.
    Viktor MJ; Rose SH; van Zyl WH; Viljoen-Bloom M
    Biotechnol Biofuels; 2013 Nov; 6(1):167. PubMed ID: 24286270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains.
    Inokuma K; Yoshida T; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1655-63. PubMed ID: 25432675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol.
    Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH
    Bioengineered; 2013; 4(2):97-102. PubMed ID: 22989992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering yeasts for raw starch conversion.
    van Zyl WH; Bloom M; Viktor MJ
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1377-88. PubMed ID: 22797599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes.
    Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S
    Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation.
    Rajoka MI; Yasmin A; Latif F
    Lett Appl Microbiol; 2004; 39(1):13-8. PubMed ID: 15189282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera.
    Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS
    Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing glucoamylase usage for commercial-scale ethanol production from starch using glucoamylase expressing Saccharomyces cerevisiae.
    Wang X; Liao B; Li Z; Liu G; Diao L; Qian F; Yang J; Jiang Y; Zhao S; Li Y; Yang S
    Bioresour Bioprocess; 2021 Feb; 8(1):20. PubMed ID: 38650183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity.
    Nakamura Y; Kobayashi F; Ohnaga M; Sawada T
    Biotechnol Bioeng; 1997 Jan; 53(1):21-5. PubMed ID: 18629955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.