These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37741616)

  • 21. Contrasting effects of nectar yeasts on the reproduction of Mediterranean plant species.
    de Vega C; Albaladejo RG; Álvarez-Pérez S; Herrera CM
    Am J Bot; 2022 Mar; 109(3):393-405. PubMed ID: 35315515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical Ecology of Floral Resources in Conservation Biological Control.
    Colazza S; Peri E; Cusumano A
    Annu Rev Entomol; 2023 Jan; 68():13-29. PubMed ID: 36130040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Floral nectary, nectar production dynamics and chemical composition in five nocturnal Oenothera species (Onagraceae) in relation to floral visitors.
    Antoń S; Komoń-Janczara E; Denisow B
    Planta; 2017 Dec; 246(6):1051-1067. PubMed ID: 28779217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial Co-Occurrence in Floral Nectar Affects Metabolites and Attractiveness to a Generalist Pollinator.
    Rering CC; Vannette RL; Schaeffer RN; Beck JJ
    J Chem Ecol; 2020 Aug; 46(8):659-667. PubMed ID: 32246258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of agricultural fungicides on microorganisms associated with floral nectar: susceptibility assays and field experiments.
    Bartlewicz J; Pozo MI; Honnay O; Lievens B; Jacquemyn H
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19776-86. PubMed ID: 27411538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Biochemical Constituents and Contents in Floral Nectar of
    Kim YK; Lee S; Song JH; Kim MJ; Yunusbaev U; Lee ML; Kim MS; Kwon HW
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32942597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inoculation of pear flowers with Metschnikowia reukaufii and Acinetobacter nectaris enhances attraction of honeybees and hoverflies, but does not increase fruit and seed set.
    Colda A; Bossaert S; Verreth C; Vanhoutte B; Honnay O; Keulemans W; Lievens B
    PLoS One; 2021; 16(4):e0250203. PubMed ID: 33886638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nectar yeasts warm the flowers of a winter-blooming plant.
    Herrera CM; Pozo MI
    Proc Biol Sci; 2010 Jun; 277(1689):1827-34. PubMed ID: 20147331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast-Bacterium Interactions: The Next Frontier in Nectar Research.
    Álvarez-Pérez S; Lievens B; Fukami T
    Trends Plant Sci; 2019 May; 24(5):393-401. PubMed ID: 30792076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nontarget impacts of neonicotinoids on nectar-inhabiting microbes.
    Cecala JM; Vannette RL
    Environ Microbiol; 2024 Mar; 26(3):e16603. PubMed ID: 38494634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism.
    Vannette RL; Gauthier MP; Fukami T
    Proc Biol Sci; 2013 Feb; 280(1752):20122601. PubMed ID: 23222453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The co-optimization of floral display and nectar reward.
    Belsare PV; Sriram B; Watve MG
    J Biosci; 2009 Dec; 34(6):963-7. PubMed ID: 20093749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nectar-dwelling microbes of common tansy are attractive to its mosquito pollinator, Culex pipiens L.
    Peach DAH; Carroll C; Meraj S; Gomes S; Galloway E; Balcita A; Coatsworth H; Young N; Uriel Y; Gries R; Lowenberger C; Moore M; Gries G
    BMC Ecol Evol; 2021 Feb; 21(1):29. PubMed ID: 33593286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. No evidence for competition over floral resources between winter-active parasitoids and pollinators in agroecosystems.
    Alford L; Roudine S; Valsami D; Fontaine-Guenel T; Namintraporn T; Guedon A; Normand R; Lagneau L; Le Lann C; Van Baaren J
    Sci Rep; 2024 Jan; 14(1):2239. PubMed ID: 38278827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light availability influences the intensity of nectar robbery and its effects on reproduction in a tropical shrub via multiple pathways.
    Fitch G; Vandermeer JH
    Am J Bot; 2020 Dec; 107(12):1635-1644. PubMed ID: 33190224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Floral nectar and honeydew microbial diversity and their role in biocontrol of insect pests and pollination.
    Álvarez-Pérez S; Lievens B; de Vega C
    Curr Opin Insect Sci; 2024 Feb; 61():101138. PubMed ID: 37931689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Volatile microbial semiochemicals and insect perception at flowers.
    Crowley-Gall A; Rering CC; Rudolph AB; Vannette RL; Beck JJ
    Curr Opin Insect Sci; 2021 Apr; 44():23-34. PubMed ID: 33096275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental fertilization increases amino acid content in floral nectar, fruit set and degree of selfing in the orchid Gymnadenia conopsea.
    Gijbels P; Ceulemans T; Van den Ende W; Honnay O
    Oecologia; 2015 Nov; 179(3):785-95. PubMed ID: 26149746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar.
    Samuni-Blank M; Izhaki I; Laviad S; Bar-Massada A; Gerchman Y; Halpern M
    PLoS One; 2014; 9(6):e99107. PubMed ID: 24922317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Floral Phytochemistry: Impact of Volatile Organic Compounds and Nectar Secondary Metabolites on Pollinator Behavior and Health.
    Slavković F; Bendahmane A
    Chem Biodivers; 2023 Apr; 20(4):e202201139. PubMed ID: 36976451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.