BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37741882)

  • 1. Oncometabolite D-2-hydroxyglutarate-dependent metabolic reprogramming induces skeletal muscle atrophy during cancer cachexia.
    Zhu X; Hao J; Zhang H; Chi M; Wang Y; Huang J; Xu R; Xincai Z; Xin B; Sun X; Zhang J; Zhou S; Cheng D; Yuan T; Ding J; Zheng S; Guo C; Yang Q
    Commun Biol; 2023 Sep; 6(1):977. PubMed ID: 37741882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptotanshinone prevents muscle wasting in CT26-induced cancer cachexia through inhibiting STAT3 signaling pathway.
    Chen L; Yang Q; Zhang H; Wan L; Xin B; Cao Y; Zhang J; Guo C
    J Ethnopharmacol; 2020 Oct; 260():113066. PubMed ID: 32505837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study.
    Yuan L; Han J; Meng Q; Xi Q; Zhuang Q; Jiang Y; Han Y; Zhang B; Fang J; Wu G
    Oncol Rep; 2015 May; 33(5):2261-8. PubMed ID: 25760630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrine improves skeletal muscle atrophy by inhibiting E3 ubiquitin ligases and activating the Akt/mTOR/FoxO3α signaling pathway in C2C12 myotubes and mice.
    Chen L; Chen L; Wan L; Huo Y; Huang J; Li J; Lu J; Xin B; Yang Q; Guo C
    Oncol Rep; 2019 Aug; 42(2):479-494. PubMed ID: 31233199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic derangements of skeletal muscle from a murine model of glioma cachexia.
    Cui P; Shao W; Huang C; Wu CJ; Jiang B; Lin D
    Skelet Muscle; 2019 Jan; 9(1):3. PubMed ID: 30635036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.
    Quan-Jun Y; Yan H; Yong-Long H; Li-Li W; Jie L; Jin-Lu H; Jin L; Peng-Guo C; Run G; Cheng G
    Mol Cancer Ther; 2017 Feb; 16(2):334-343. PubMed ID: 27599525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy.
    Reed SA; Sandesara PB; Senf SM; Judge AR
    FASEB J; 2012 Mar; 26(3):987-1000. PubMed ID: 22102632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.
    Sun R; Zhang S; Hu W; Lu X; Lou N; Yang Z; Chen S; Zhang X; Yang H
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C101-15. PubMed ID: 27122162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Evolution of the GDH2 Allosteric Domain Promotes Gliomagenesis by Resolving IDH1
    Waitkus MS; Pirozzi CJ; Moure CJ; Diplas BH; Hansen LJ; Carpenter AB; Yang R; Wang Z; Ingram BO; Karoly ED; Mohney RP; Spasojevic I; McLendon RE; Friedman HS; He Y; Bigner DD; Yan H
    Cancer Res; 2018 Jan; 78(1):36-50. PubMed ID: 29097607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cathepsin K activity controls cachexia-induced muscle atrophy via the modulation of IRS1 ubiquitination.
    Meng X; Huang Z; Inoue A; Wang H; Wan Y; Yue X; Xu S; Jin X; Shi GP; Kuzuya M; Cheng XW
    J Cachexia Sarcopenia Muscle; 2022 Apr; 13(2):1197-1209. PubMed ID: 35098692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer-Induced Muscle Wasting Requires p38β MAPK Activation of p300.
    Sin TK; Zhang G; Zhang Z; Zhu JZ; Zuo Y; Frost JA; Li M; Li YP
    Cancer Res; 2021 Feb; 81(4):885-897. PubMed ID: 33355181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated expression of activins promotes muscle wasting and cachexia.
    Chen JL; Walton KL; Winbanks CE; Murphy KT; Thomson RE; Makanji Y; Qian H; Lynch GS; Harrison CA; Gregorevic P
    FASEB J; 2014 Apr; 28(4):1711-23. PubMed ID: 24378873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JNK signaling contributes to skeletal muscle wasting and protein turnover in pancreatic cancer cachexia.
    Mulder SE; Dasgupta A; King RJ; Abrego J; Attri KS; Murthy D; Shukla SK; Singh PK
    Cancer Lett; 2020 Oct; 491():70-77. PubMed ID: 32735910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-Derived Pancreatic Cancer Cells Induce C2C12 Myotube Atrophy by Releasing Hsp70 and Hsp90.
    Wu HY; Trevino JG; Fang BL; Riner AN; Vudatha V; Zhang GH; Li YP
    Cells; 2022 Sep; 11(17):. PubMed ID: 36078164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IMB0901 inhibits muscle atrophy induced by cancer cachexia through MSTN signaling pathway.
    Liu D; Qiao X; Ge Z; Shang Y; Li Y; Wang W; Chen M; Si S; Chen SZ
    Skelet Muscle; 2019 Mar; 9(1):8. PubMed ID: 30922397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cucurbitacin IIb attenuates cancer cachexia induced skeletal muscle atrophy by regulating the IL-6/STAT3/FoxO signaling pathway.
    Wang Y; Sun X; Yang Q; Guo C
    Phytother Res; 2023 Aug; 37(8):3380-3393. PubMed ID: 37073890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saikosaponin D alleviates cancer cachexia by directly inhibiting STAT3.
    Chen LL; Xia LY; Zhang JP; Wang Y; Chen JY; Guo C; Xu WH
    Phytother Res; 2023 Mar; 37(3):809-819. PubMed ID: 36447385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moderating AKT signaling with baicalein protects against weight loss by preventing muscle atrophy in a cachexia model caused by CT26 colon cancer.
    Song G; Park WY; Jiao W; Park JY; Jung SJ; Ma S; Lee J; Lee KY; Choe SK; Park J; Kwak HJ; Ahn KS; Um JY
    Biochim Biophys Acta Mol Cell Res; 2024 Mar; 1871(3):119670. PubMed ID: 38220095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.
    Fukawa T; Yan-Jiang BC; Min-Wen JC; Jun-Hao ET; Huang D; Qian CN; Ong P; Li Z; Chen S; Mak SY; Lim WJ; Kanayama HO; Mohan RE; Wang RR; Lai JH; Chua C; Ong HS; Tan KK; Ho YS; Tan IB; Teh BT; Shyh-Chang N
    Nat Med; 2016 Jun; 22(6):666-71. PubMed ID: 27135739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of PARP activity in lung cancer-induced cachexia: Effects on muscle oxidative stress, proteolysis, anabolic markers, and phenotype.
    Chacon-Cabrera A; Mateu-Jimenez M; Langohr K; Fermoselle C; García-Arumí E; Andreu AL; Yelamos J; Barreiro E
    J Cell Physiol; 2017 Dec; 232(12):3744-3761. PubMed ID: 28177129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.