These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37741902)

  • 21. The influence of dynamic factors on triaxial net muscular moments at the L5/S1 joint during asymmetrical lifting and lowering.
    Gagnon D; Gagnon M
    J Biomech; 1992 Aug; 25(8):891-901. PubMed ID: 1639833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EMG Validation of a Subject-Specific Thoracolumbar Spine Musculoskeletal Model During Dynamic Activities in Older Adults.
    Alemi MM; Banks JJ; Lynch AC; Allaire BT; Bouxsein ML; Anderson DE
    Ann Biomed Eng; 2023 Oct; 51(10):2313-2322. PubMed ID: 37353715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting.
    Ghezelbash F; Shirazi-Adl A; El Ouaaid Z; Plamondon A; Arjmand N
    J Biomech; 2020 Mar; 102():109550. PubMed ID: 31932024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using static postures to estimate spinal loading during dynamic lifts with participant-specific thoracolumbar musculoskeletal models.
    Banks JJ; Alemi MM; Allaire BT; Lynch AC; Bouxsein ML; Anderson DE
    Appl Ergon; 2023 Jan; 106():103869. PubMed ID: 36055036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transverse-contour modeling of trunk muscle-distributed forces and spinal loads during lifting and twisting.
    Davis JR; Mirka GA
    Spine (Phila Pa 1976); 2000 Jan; 25(2):180-9. PubMed ID: 10685481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A biologically-assisted curved muscle model of the lumbar spine: Model validation.
    Hwang J; Knapik GG; Dufour JS; Best TM; Khan SN; Mendel E; Marras WS
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():153-159. PubMed ID: 27484459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loads in the spinal structures during lifting: development of a three-dimensional comprehensive biomechanical model.
    Han JS; Goel VK; Ahn JY; Winterbottom J; McGowan D; Weinstein J; Cook T
    Eur Spine J; 1995; 4(3):153-68. PubMed ID: 7552650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of biomechanical parameters in the lumbar spine during static sagittal plane lifting.
    Kong WZ; Goel VK; Gilbertson LG
    J Biomech Eng; 1998 Apr; 120(2):273-80. PubMed ID: 10412390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manual material handling in the supermarket sector. Part 2: Knee, spine and shoulder joint reaction forces.
    Skals S; Bláfoss R; Andersen LL; Andersen MS; de Zee M
    Appl Ergon; 2021 Apr; 92():103345. PubMed ID: 33444883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of trunk muscle coactivity on dynamic spinal loads.
    Granata KP; Marras WS
    Spine (Phila Pa 1976); 1995 Apr; 20(8):913-9. PubMed ID: 7644956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.
    Arjmand N; Plamondon A; Shirazi-Adl A; Parnianpour M; Larivière C
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):537-44. PubMed ID: 22265249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks.
    Madinei S; Nussbaum MA
    J Biomech; 2023 Jan; 147():111439. PubMed ID: 36638578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic analysis of forces in the lumbar spine during bag carrying.
    Gómez L; Díaz CA; Orozco GA; García JJ
    Int J Occup Saf Ergon; 2018 Dec; 24(4):605-613. PubMed ID: 28753120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One versus two-handed lifting and lowering: lumbar spine loads and recommended one-handed limits protecting the lower back.
    Weston EB; Aurand AM; Dufour JS; Knapik GG; Marras WS
    Ergonomics; 2020 Apr; 63(4):505-521. PubMed ID: 32024437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regression models for predicting peak and continuous three-dimensional spinal loads during symmetric and asymmetric lifting tasks.
    Fathallah FA; Marras WS; Parnianpour M
    Hum Factors; 1999 Sep; 41(3):373-88. PubMed ID: 10665206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A biomechanical model for estimating loads on thoracic and lumbar vertebrae.
    Iyer S; Christiansen BA; Roberts BJ; Valentine MJ; Manoharan RK; Bouxsein ML
    Clin Biomech (Bristol, Avon); 2010 Nov; 25(9):853-8. PubMed ID: 20655634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An assessment of complex spinal loads during dynamic lifting tasks.
    Fathallah FA; Marras WS; Parnianpour M
    Spine (Phila Pa 1976); 1998 Mar; 23(6):706-16. PubMed ID: 9549793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating Compressive and Shear Forces at L5-S1: Exploring the Effects of Load Weight, Asymmetry, and Height Using Optical and Inertial Motion Capture Systems.
    Nail-Ulloa I; Zabala M; Sesek R; Chen H; Schall MC; Gallagher S
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: A combined in vivo, musculoskeletal, and finite element model study.
    Khoddam-Khorasani P; Arjmand N; Shirazi-Adl A
    J Biomech; 2020 May; 104():109728. PubMed ID: 32147242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.