These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37741932)

  • 21. Effects of epinephrine on hemodynamic changes during cardiopulmonary resuscitation in a neonatal piglet model.
    Wagner M; Cheung PY; Li ES; Lee TF; Lu M; O'Reilly M; Olischar M; Schmölzer GM
    Pediatr Res; 2018 Apr; 83(4):897-903. PubMed ID: 29244793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison between synchronized and non-synchronized ventilation and between guided and non-guided chest compressions during resuscitation in a pediatric animal model after asphyxial cardiac arrest.
    Manrique G; García M; Fernández SN; González R; Solana MJ; López J; Urbano J; López-Herce J
    PLoS One; 2019; 14(7):e0219660. PubMed ID: 31318890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tidal Volume Delivery and Endotracheal Tube Leak during Cardiopulmonary Resuscitation in Intubated Newborn Piglets with Hypoxic Cardiac Arrest Exposed to Different Modes of Ventilatory Support.
    Mendler MR; Weber C; Hassan MA; Huang L; Mayer B; Hummler HD
    Neonatology; 2017; 111(2):100-106. PubMed ID: 27643857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest.
    Aggelina A; Pantazopoulos I; Giokas G; Chalkias A; Mavrovounis G; Papalois A; Douvanas A; Xanthos T; Iacovidou N
    Am J Emerg Med; 2021 Oct; 48():60-66. PubMed ID: 33839633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.
    Berg RA; Sanders AB; Kern KB; Hilwig RW; Heidenreich JW; Porter ME; Ewy GA
    Circulation; 2001 Nov; 104(20):2465-70. PubMed ID: 11705826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pilot Study to Compare the Use of End-Tidal Carbon Dioxide-Guided and Diastolic Blood Pressure-Guided Chest Compression Delivery in a Swine Model of Neonatal Asphyxial Cardiac Arrest.
    O'Brien CE; Reyes M; Santos PT; Heitmiller SE; Kulikowicz E; Kudchadkar SR; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2018 Oct; 7(19):e009728. PubMed ID: 30371318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. End-Tidal CO2-Guided Chest Compression Delivery Improves Survival in a Neonatal Asphyxial Cardiac Arrest Model.
    Hamrick JT; Hamrick JL; Bhalala U; Armstrong JS; Lee JH; Kulikowicz E; Lee JK; Kudchadkar SR; Koehler RC; Hunt EA; Shaffner DH
    Pediatr Crit Care Med; 2017 Nov; 18(11):e575-e584. PubMed ID: 28817508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hemodynamic-Directed Cardiopulmonary Resuscitation Improves Neurologic Outcomes and Mitochondrial Function in the Heart and Brain.
    Lautz AJ; Morgan RW; Karlsson M; Mavroudis CD; Ko TS; Licht DJ; Nadkarni VM; Berg RA; Sutton RM; Kilbaugh TJ
    Crit Care Med; 2019 Mar; 47(3):e241-e249. PubMed ID: 30779720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asynchronous ventilation at 120 compared with 90 or 100 compressions per minute improves haemodynamic recovery in asphyxiated newborn piglets.
    Patel S; Cheung PY; Lee TF; Pasquin MP; Lu M; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2020 Jul; 105(4):357-363. PubMed ID: 31123054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Different Compression to Ventilation Ratios (2: 1, 3: 1, and 4: 1) during Cardiopulmonary Resuscitation in a Porcine Model of Neonatal Asphyxia.
    Pasquin MP; Cheung PY; Patel S; Lu M; Lee TF; Wagner M; O'Reilly M; Schmölzer GM
    Neonatology; 2018; 114(1):37-45. PubMed ID: 29649792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [An experimental study on the effects of rhythmic abdominal lifting and compression during cardiopulmonary resuscitation in a swine model of asphyxia].
    Li XM; Wang LX; Liu YH; Sun K; Ma LZ; Guo XD; Li HQ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2012 Apr; 24(4):237-40. PubMed ID: 22464579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of pressure-controlled mechanical ventilation in a swine model of intraoperative pediatric cardiac arrest.
    Lapid FM; O'Brien CE; Kudchadkar SR; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    Paediatr Anaesth; 2020 Apr; 30(4):462-468. PubMed ID: 31900987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "Bystander" chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless "cardiac arrest".
    Berg RA; Hilwig RW; Kern KB; Ewy GA
    Circulation; 2000 Apr; 101(14):1743-8. PubMed ID: 10758059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous chest compression during sustained inflation versus continuous compression with asynchronized ventilation in an infantile porcine model of severe bradycardia.
    Morin C; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    Resusc Plus; 2024 Jun; 18():100629. PubMed ID: 38617441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LUCAS Versus Manual Chest Compression During Ambulance Transport: A Hemodynamic Study in a Porcine Model of Cardiac Arrest.
    Magliocca A; Olivari D; De Giorgio D; Zani D; Manfredi M; Boccardo A; Cucino A; Sala G; Babini G; Ruggeri L; Novelli D; Skrifvars MB; Hardig BM; Pravettoni D; Staszewsky L; Latini R; Belloli A; Ristagno G
    J Am Heart Assoc; 2019 Jan; 8(1):e011189. PubMed ID: 30590977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Piglet Perinatal Asphyxia Model to Study Cardiac Injury and Hemodynamics after Cardiac Arrest, Resuscitation, and the Return of Spontaneous Circulation.
    Stenersen EO; Olsen A; Melheim M; Solberg R; Dannevig I; Schmölzer G; Cheung PY; Nakstad B; Saugstad OD; Rønnestad A; Solevåg AL
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36715405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Different Respiratory Modes on Return of Spontaneous Circulation in a Newborn Piglet Model of Hypoxic Cardiac Arrest.
    Mendler MR; Weber C; Hassan MA; Huang L; Waitz M; Mayer B; Hummler HD
    Neonatology; 2016; 109(1):22-30. PubMed ID: 26460587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ventilation with 18, 21, or 100% Oxygen during Cardiopulmonary Resuscitation of Asphyxiated Piglets: A Randomized Controlled Animal Trial.
    Solevåg AL; Garcia-Hidalgo C; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Neonatology; 2020; 117(1):102-110. PubMed ID: 31896112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of optimal chest compression depth during neonatal cardiopulmonary resuscitation: a randomised controlled animal trial.
    Bruckner M; Kim SY; Shim GH; Neset M; Garcia-Hidalgo C; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2022 May; 107(3):262-268. PubMed ID: 34330756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chest compressions versus ventilation plus chest compressions: a randomized trial in a pediatric asphyxial cardiac arrest animal model.
    Botran M; Lopez-Herce J; Urbano J; Solana MJ; Garcia A; Carrillo A
    Intensive Care Med; 2011 Nov; 37(11):1873-80. PubMed ID: 21847647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.