These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37741932)

  • 41. [Effects of interrupted abdominal aorta compression on cardiopulmonary cerebral resuscitation after cardiac arrest in rabbit].
    Dou W; Wang L; Liu H; Zhang P; Guo C; Liu Y; Ma L; Sun K; Ma W; Wang Q; Guo X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2014 Oct; 26(10):718-21. PubMed ID: 25315943
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A review of approaches to optimise chest compressions in the resuscitation of asphyxiated newborns.
    Solevåg AL; Cheung PY; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2016 May; 101(3):F272-6. PubMed ID: 26627554
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Injury characteristics and hemodynamics associated with guideline-compliant CPR in a pediatric porcine cardiac arrest model.
    Salcido DD; Koller AC; Genbrugge C; Fink EL; Berg RA; Menegazzi JJ
    Am J Emerg Med; 2022 Jan; 51():176-183. PubMed ID: 34763236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Different Techniques of Respiratory Support Do Not Significantly Affect Gas Exchange during Cardiopulmonary Resuscitation in a Newborn Piglet Model.
    Mendler MR; Maurer M; Hassan MA; Huang L; Waitz M; Mayer B; Hummler HD
    Neonatology; 2015; 108(1):73-80. PubMed ID: 26044192
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Continuous chest compressions with asynchronous ventilations increase carotid blood flow in the perinatal asphyxiated lamb model.
    Vali P; Lesneski A; Hardie M; Alhassen Z; Chen P; Joudi H; Sankaran D; Lakshminrusimha S
    Pediatr Res; 2021 Oct; 90(4):752-758. PubMed ID: 33469187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Early versus delayed cyclosporine treatment in cardiac recovery and intestinal injury during resuscitation of asphyxiated newborn piglets.
    Gill RS; Lee TF; Sergi C; Bigam DL; Cheung PY
    Intensive Care Med; 2012 Jul; 38(7):1215-23. PubMed ID: 22572838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feasibility of Biosignal-guided Chest Compression During Cardiopulmonary Resuscitation: A Proof of Concept.
    Sundermann ML; Salcido DD; Koller AC; Menegazzi JJ
    Acad Emerg Med; 2016 Jan; 23(1):93-7. PubMed ID: 26720293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Continuous Chest Compressions During Sustained Inflations in a Perinatal Asphyxial Cardiac Arrest Lamb Model.
    Vali P; Chandrasekharan P; Rawat M; Gugino S; Koenigsknecht C; Helman J; Mathew B; Berkelhamer S; Nair J; Lakshminrusimha S
    Pediatr Crit Care Med; 2017 Aug; 18(8):e370-e377. PubMed ID: 28661972
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Periodic acceleration (pGz) CPR in a swine model of asphyxia induced cardiac arrest. Short-term hemodynamic comparisons.
    Adams JA; Bassuk JA; Arias J; Wu H; Jorapur V; Lamas GA; Kurlansky P
    Resuscitation; 2008 Apr; 77(1):132-8. PubMed ID: 18164796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Randomized, Controlled Animal Study: 21% or 100% Oxygen during Cardiopulmonary Resuscitation in Asphyxiated Infant Piglets.
    Nyame S; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Children (Basel); 2022 Oct; 9(11):. PubMed ID: 36360329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cyclosporine treatment improves cardiac function and systemic hemodynamics during resuscitation in a newborn piglet model of asphyxia: a dose-response study.
    Gill RS; Manouchehri N; Liu JQ; Lee TF; Cho WJ; Thiesen A; Churchill T; Bigam D; Cheung PY
    Crit Care Med; 2012 Apr; 40(4):1237-44. PubMed ID: 22425819
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Standardized model of porcine resuscitation using a custom-made resuscitation board results in optimal hemodynamic management.
    Wollborn J; Ruetten E; Schlueter B; Haberstroh J; Goebel U; Schick MA
    Am J Emerg Med; 2018 Oct; 36(10):1738-1744. PubMed ID: 29395757
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Left ventricular compressions improve return of spontaneous circulation and hemodynamics in a swine model of traumatic cardiopulmonary arrest.
    Anderson KL; Fiala KC; Castaneda MG; Boudreau SM; Araña AA; Bebarta VS
    J Trauma Acute Care Surg; 2018 Aug; 85(2):303-310. PubMed ID: 29613954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemodynamic directed CPR improves short-term survival from asphyxia-associated cardiac arrest.
    Sutton RM; Friess SH; Bhalala U; Maltese MR; Naim MY; Bratinov G; Niles D; Nadkarni VM; Becker LB; Berg RA
    Resuscitation; 2013 May; 84(5):696-701. PubMed ID: 23142199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Return of Spontaneous Circulation Depends on Cardiac Rhythm During Neonatal Cardiac Arrest in Asphyxiated Newborn Animals.
    Wagner M; Cheung PY; Yaskina M; Lee TF; Vieth VA; O'Reilly M; Schmölzer GM
    Front Pediatr; 2021; 9():641132. PubMed ID: 33643979
    [No Abstract]   [Full Text] [Related]  

  • 56. Optimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins.
    Solevåg AL; Schmölzer GM
    Front Pediatr; 2017; 5():3. PubMed ID: 28168185
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical devices for cardiopulmonary resuscitation.
    Wigginton JG; Miller AH; Benitez FL; Pepe PE
    Curr Opin Crit Care; 2005 Jun; 11(3):219-23. PubMed ID: 15928469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of hemodynamic effects and resuscitation outcomes between automatic simultaneous sterno-thoracic cardiopulmonary resuscitation device and LUCAS in a swine model of cardiac arrest.
    Cha KC; Kim HI; Kim YW; Ahn GJ; Kim YS; Kim SJ; Lee JH; Oh Hwang S
    PLoS One; 2019; 14(8):e0221965. PubMed ID: 31469891
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active compression-decompression resuscitation: analysis of transmitral flow and left ventricular volume by transesophageal echocardiography in humans. Cardiopulmonary Resuscitation Working Group.
    Tucker KJ; Redberg RF; Schiller NB; Cohen TJ
    J Am Coll Cardiol; 1993 Nov; 22(5):1485-93. PubMed ID: 8227809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.