These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 37742053)
1. PTBGRP: predicting phage-bacteria interactions with graph representation learning on microbial heterogeneous information network. Pan J; You Z; You W; Zhao T; Feng C; Zhang X; Ren F; Ma S; Wu F; Wang S; Sun Y Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37742053 [TBL] [Abstract][Full Text] [Related]
2. An Effective Model for Predicting Phage-Host Interactions Via Graph Embedding Representation Learning With Multi-Head Attention Mechanism. Wang Y; Sun H; Wang H; Li D; Zhao W; Jiang X; Shen X IEEE J Biomed Health Inform; 2023 Jun; 27(6):3061-3071. PubMed ID: 37030796 [TBL] [Abstract][Full Text] [Related]
3. GSPHI: A novel deep learning model for predicting phage-host interactions via multiple biological information. Pan J; You W; Lu X; Wang S; You Z; Sun Y Comput Struct Biotechnol J; 2023; 21():3404-3413. PubMed ID: 37397626 [TBL] [Abstract][Full Text] [Related]
4. A microbial knowledge graph-based deep learning model for predicting candidate microbes for target hosts. Pan J; Zhang Z; Li Y; Yu J; You Z; Li C; Wang S; Zhu M; Ren F; Zhang X; Sun Y; Wang S Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38555472 [TBL] [Abstract][Full Text] [Related]
5. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks. Zhao BW; Hu L; You ZH; Wang L; Su XR Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172 [TBL] [Abstract][Full Text] [Related]
6. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related]
7. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network. Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483 [TBL] [Abstract][Full Text] [Related]
8. Zero-shot-capable identification of phage-host relationships with whole-genome sequence representation by contrastive learning. Zhang YZ; Liu Y; Bai Z; Fujimoto K; Uematsu S; Imoto S Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37466138 [TBL] [Abstract][Full Text] [Related]
9. A Deep Learning-Based Method for Identification of Bacteriophage-Host Interaction. Li M; Wang Y; Li F; Zhao Y; Liu M; Zhang S; Bin Y; Smith AI; Webb GI; Li J; Song J; Xia J IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1801-1810. PubMed ID: 32813660 [TBL] [Abstract][Full Text] [Related]
10. Prokaryotic virus host prediction with graph contrastive augmentaion. Du ZH; Zhong JP; Liu Y; Li JQ PLoS Comput Biol; 2023 Dec; 19(12):e1011671. PubMed ID: 38039280 [TBL] [Abstract][Full Text] [Related]
11. CHERRY: a Computational metHod for accuratE pRediction of virus-pRokarYotic interactions using a graph encoder-decoder model. Shang J; Sun Y Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35595715 [TBL] [Abstract][Full Text] [Related]
12. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks. Ren ZH; You ZH; Yu CQ; Li LP; Guan YJ; Guo LX; Pan J Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070624 [TBL] [Abstract][Full Text] [Related]
13. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks. Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415 [TBL] [Abstract][Full Text] [Related]
14. Multi-modality attribute learning-based method for drug-protein interaction prediction based on deep neural network. Dong W; Yang Q; Wang J; Xu L; Li X; Luo G; Gao X Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37114624 [TBL] [Abstract][Full Text] [Related]
15. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding. Yang F; Fan K; Song D; Lin H BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790 [TBL] [Abstract][Full Text] [Related]
16. DeepPBI-KG: a deep learning method for the prediction of phage-bacteria interactions based on key genes. Wei T; Lu C; Du H; Yang Q; Qi X; Liu Y; Zhang Y; Chen C; Li Y; Tang Y; Zhang WH; Tao X; Jiang N Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39344712 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Tan D; Zhang Y; Cheng M; Le S; Gu J; Bao J; Qin J; Guo X; Zhu T Viruses; 2019 Nov; 11(11):. PubMed ID: 31752386 [TBL] [Abstract][Full Text] [Related]
18. Specific topology and topological connection sensitivity enhanced graph learning for lncRNA-disease association prediction. Xuan P; Bai H; Cui H; Zhang X; Nakaguchi T; Zhang T Comput Biol Med; 2023 Sep; 164():107265. PubMed ID: 37531860 [TBL] [Abstract][Full Text] [Related]
19. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction. Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408 [TBL] [Abstract][Full Text] [Related]
20. Drug-target interaction predication via multi-channel graph neural networks. Li Y; Qiao G; Wang K; Wang G Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34661237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]