BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37742059)

  • 1. Optimization of breeding program design through stochastic simulation with kernel regression.
    Hassanpour A; Geibel J; Simianer H; Pook T
    G3 (Bethesda); 2023 Dec; 13(12):. PubMed ID: 37742059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced optimum contribution selection as a tool to improve regional cattle breeds: a feasibility study for Vorderwald cattle.
    Kohl S; Wellmann R; Herold P
    Animal; 2020 Jan; 14(1):1-12. PubMed ID: 31296274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the benefits and perils of importing genetic material in small cattle breeding programs via simulation.
    Obšteter J; Jenko J; Pocrnic I; Gorjanc G
    J Dairy Sci; 2023 Aug; 106(8):5593-5605. PubMed ID: 37474361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of advanced Optimum Contribution Selection in small-scale breeding schemes: prospects and challenges in Vorderwald cattle.
    Kohl S; Wellmann R; Herold P
    Animal; 2020 Mar; 14(3):452-463. PubMed ID: 31597583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of genomic information on optimal contribution selection in livestock breeding programs.
    Clark SA; Kinghorn BP; Hickey JM; van der Werf JH
    Genet Sel Evol; 2013 Oct; 45(1):44. PubMed ID: 24171942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing female allocation to reproductive technologies considering merit, inbreeding and cost in nucleus breeding programmes with genomic selection.
    Granleese T; Clark SA; Kinghorn BP; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):79-90. PubMed ID: 30585664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies.
    Thomasen JR; Liu H; Sørensen AC
    J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Economic optimization of full-sib test group size and genotyping effort in a breeding program for Atlantic salmon.
    Janssen K; Saatkamp HW; Calus MPL; Komen H
    Genet Sel Evol; 2019 Sep; 51(1):49. PubMed ID: 31481013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AlphaMate: a program for optimizing selection, maintenance of diversity and mate allocation in breeding programs.
    Gorjanc G; Hickey JM
    Bioinformatics; 2018 Oct; 34(19):3408-3411. PubMed ID: 29722792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of kinship matrices on genetic gain and inbreeding with optimum contribution selection in a genomic dairy cattle breeding program.
    Gautason E; Sahana G; Guldbrandtsen B; Berg P
    Genet Sel Evol; 2023 Jul; 55(1):48. PubMed ID: 37460999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short- and long-term consequences of collaboration between Northern European Red dairy and dual-purpose cattle.
    Schmidtmann C; Slagboom M; Sørensen AC; Hinrichs D; Thaller G; Kargo M
    J Anim Breed Genet; 2022 Jul; 139(4):447-461. PubMed ID: 35187742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximizing the response of selection with a predefined rate of inbreeding: overlapping generations.
    Meuwissen TH; Sonesson AK
    J Anim Sci; 1998 Oct; 76(10):2575-83. PubMed ID: 9814896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of dairy cattle breeding designs that use genomic selection.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Dairy Sci; 2011 Jan; 94(1):493-500. PubMed ID: 21183061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.
    Yin T; Wensch-Dorendorf M; Simianer H; Swalve HH; König S
    Animal; 2014 Jun; 8(6):877-86. PubMed ID: 24703184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mate selection: A useful approach to maximize genetic gain and control inbreeding in genomic and conventional oil palm (Elaeis guineensis Jacq.) hybrid breeding.
    Tchounke B; Sanchez L; Bell JM; Cros D
    PLoS Comput Biol; 2023 Sep; 19(9):e1010290. PubMed ID: 37695766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction.
    Cao L; Mulder HA; Liu H; Nielsen HM; S Rensen AC
    J Dairy Sci; 2021 Jul; 104(7):8122-8134. PubMed ID: 33934864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a breeding program for improving the milk yield performance of Butana cattle under smallholder production conditions using a stochastic simulation approach.
    Omer EAM; Hinrichs D; Addo S; Roessler R
    J Dairy Sci; 2022 Jun; 105(6):5261-5270. PubMed ID: 35282914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants.
    Lin Z; Shi F; Hayes BJ; Daetwyler HD
    Theor Appl Genet; 2017 May; 130(5):969-980. PubMed ID: 28364262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.