These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37742404)

  • 21. Oysters for legacy and emerging per- and polyfluoroalkyl substances (PFASs) monitoring in estuarine and coastal waters: Phase distribution and bioconcentration profile.
    Wang Q; Ruan Y; Jin L; Lu G; Ma L; Yeung LWY; Wang WX; Lam PKS
    Sci Total Environ; 2022 Nov; 846():157453. PubMed ID: 35863582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Distribution, Sources, and Risk Assessment of Polyfluoroalkyl Substances in Main Rivers and Soils of Tianjin].
    Wu QQ; Wu Q; Song S; Ren JG; Yang SJ; Wu YQ
    Huan Jing Ke Xue; 2021 Aug; 42(8):3682-3694. PubMed ID: 34309255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioaccumulation and trophic magnification of emerging and legacy per- and polyfluoroalkyl substances (PFAS) in a St. Lawrence River food web.
    Munoz G; Mercier L; Duy SV; Liu J; Sauvé S; Houde M
    Environ Pollut; 2022 Sep; 309():119739. PubMed ID: 35817301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial distribution, compositional profile, sources, ecological and human health risks of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in freshwater reservoirs of Punjab, Pakistan.
    Riaz R; Junaid M; Rehman MYA; Iqbal T; Khan JA; Dong Y; Yue L; Chen Y; Xu N; Malik RN
    Sci Total Environ; 2023 Jan; 856(Pt 2):159144. PubMed ID: 36183770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina.
    Pétré MA; Salk KR; Stapleton HM; Ferguson PL; Tait G; Obenour DR; Knappe DRU; Genereux DP
    Sci Total Environ; 2022 Jul; 831():154763. PubMed ID: 35339537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal distribution, partitioning behavior and flux of per- and polyfluoroalkyl substances in surface water and sediment from Poyang Lake, China.
    Tang A; Zhang X; Li R; Tu W; Guo H; Zhang Y; Li Z; Liu Y; Mai B
    Chemosphere; 2022 May; 295():133855. PubMed ID: 35124087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristic and health risk of per- and polyfluoroalkyl substances from cosmetics via dermal exposure.
    Lin X; Xing Y; Chen H; Zhou Y; Zhang X; Liu P; Li J; Lee HK; Huang Z
    Environ Pollut; 2023 Dec; 338():122685. PubMed ID: 37804905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Per- and Polyfluoroalkyl Substances in Ducks and the Relationship with Concentrations in Water, Sediment, and Soil.
    Sharp S; Sardiña P; Metzeling L; McKenzie R; Leahy P; Menkhorst P; Hinwood A
    Environ Toxicol Chem; 2021 Mar; 40(3):846-858. PubMed ID: 32672850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated levels of per- and polyfluoroalkyl substances (PFAS) in freshwater benthic macroinvertebrates from the Hudson River Watershed.
    Brase RA; Schwab HE; Li L; Spink DC
    Chemosphere; 2022 Mar; 291(Pt 2):132830. PubMed ID: 34762886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Source apportionment of serum PFASs in two highly exposed communities.
    Wallis DJ; Barton KE; Knappe DRU; Kotlarz N; McDonough CA; Higgins CP; Hoppin JA; Adgate JL
    Sci Total Environ; 2023 Jan; 855():158842. PubMed ID: 36122706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The sources and bioaccumulation of per- and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake.
    Xing Y; Zhou Y; Zhang X; Lin X; Li J; Liu P; Lee HK; Huang Z
    Sci Total Environ; 2023 Dec; 905():167313. PubMed ID: 37742961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution, source investigation, and risk assessment of topsoil heavy metals in areas with intensive anthropogenic activities using the positive matrix factorization (PMF) model coupled with self-organizing map (SOM).
    Jiang W; Meng L; Liu F; Sheng Y; Chen S; Yang J; Mao H; Zhang J; Zhang Z; Ning H
    Environ Geochem Health; 2023 Aug; 45(8):6353-6370. PubMed ID: 37310651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exposure pathways and bioaccumulation of per- and polyfluoroalkyl substances in freshwater aquatic ecosystems: Key considerations.
    Lewis AJ; Yun X; Spooner DE; Kurz MJ; McKenzie ER; Sales CM
    Sci Total Environ; 2022 May; 822():153561. PubMed ID: 35101505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Survey of per- and polyfluoroalkyl substances (PFAS) in surface water collected in Pensacola, FL.
    da Silva BF; Aristizabal-Henao JJ; Aufmuth J; Awkerman J; Bowden JA
    Heliyon; 2022 Aug; 8(8):e10239. PubMed ID: 36090227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Per- and polyfluorinated alkyl substances (PFAS) in Pennsylvania surface waters: A statewide assessment, associated sources, and land-use relations.
    Breitmeyer SE; Williams AM; Duris JW; Eicholtz LW; Shull DR; Wertz TA; Woodward EE
    Sci Total Environ; 2023 Aug; 888():164161. PubMed ID: 37196959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The impact of risk management measures on the concentrations of per- and polyfluoroalkyl substances in source and treated drinking waters in Ontario, Canada.
    Kleywegt S; Raby M; McGill S; Helm P
    Sci Total Environ; 2020 Dec; 748():141195. PubMed ID: 32805563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution, sources, and pollution levels of toxic metal(loid)s in an urban river (Ichamati), Bangladesh using SOM and PMF modeling with GIS tool.
    Nasiruddin M; Islam ARMT; Siddique MAB; Hasanuzaman M; Hassan MM; Akbor MA; Hasan M; Islam MS; Khan R; Al Amin M; Pal SC; Idris AM; Kumar S
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):20934-20958. PubMed ID: 36264457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Warming Affects Bioconcentration and Bioaccumulation of Per- and Polyfluoroalkyl Substances by Pelagic and Benthic Organisms in a Water-Sediment System.
    Wang H; Hu D; Wen W; Lin X; Xia X
    Environ Sci Technol; 2023 Mar; 57(9):3612-3622. PubMed ID: 36808967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine - a mass balance approach using in vitro methods and chemical analysis.
    Wölz J; Engwall M; Maletz S; Olsman Takner H; van Bavel B; Kammann U; Klempt M; Weber R; Braunbeck T; Hollert H
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):536-53. PubMed ID: 18936997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Per and Polyfluoroalkyl Substances Ecological Risk-Based Screening Levels.
    Zodrow JM; Frenchmeyer M; Dally K; Osborn E; Anderson P; Divine C
    Environ Toxicol Chem; 2021 Mar; 40(3):921-936. PubMed ID: 33369775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.