These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin. Babizhayev MA; Bours J; Utikal KJ Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796 [TBL] [Abstract][Full Text] [Related]
3. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
4. Biochemistry of the ageing rat lens. II. Isoelectric focusing of water-soluble crystallins. Bours J; Hockwin O Ophthalmic Res; 1983; 15(5):234-9. PubMed ID: 6646626 [TBL] [Abstract][Full Text] [Related]
5. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper. Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558 [TBL] [Abstract][Full Text] [Related]
6. Water-soluble and insoluble crystallins of the developing human fetal lens, analyzed by agarose/polyacrylamide thin-layer isoelectric focusing. Ahrend MH; Bours J; Födisch HJ Ophthalmic Res; 1987; 19(3):150-6. PubMed ID: 3658325 [TBL] [Abstract][Full Text] [Related]
7. [The immunological characterization and isoelectric focusing of water-soluble proteins in the lens related to aging (author's transl)]. Bours J; Hockwin O Klin Monbl Augenheilkd; 1977 Jan; 170(1):51-9. PubMed ID: 557701 [TBL] [Abstract][Full Text] [Related]
8. Crystallin distribution patterns in concentric layers from toad eye lenses. Keenan J; Elia G; Dunn MJ; Orr DF; Pierscionek BK Proteomics; 2009 Dec; 9(23):5340-9. PubMed ID: 19813212 [TBL] [Abstract][Full Text] [Related]
9. Calcium activated proteolysis and protein modification in the U18666A cataract. Chandrasekher G; Cenedella RJ Exp Eye Res; 1993 Dec; 57(6):737-45. PubMed ID: 8150025 [TBL] [Abstract][Full Text] [Related]
10. Effect of chronic hyperglycemia on crystallin levels in rat lens. Reddy VS; Kumar CU; Reddy GB Biochem Biophys Res Commun; 2014 Apr; 446(2):602-7. PubMed ID: 24632206 [TBL] [Abstract][Full Text] [Related]
11. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. David LL; Azuma M; Shearer TR Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740 [TBL] [Abstract][Full Text] [Related]
12. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
13. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. Su SP; McArthur JD; Truscott RJ; Aquilina JA Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408 [TBL] [Abstract][Full Text] [Related]
14. Age-related changes in water and crystallin content of the fetal and adult human lens, demonstrated by a microsectioning technique. Bours J; Födisch HJ; Hockwin O Ophthalmic Res; 1987; 19(4):235-9. PubMed ID: 3320839 [TBL] [Abstract][Full Text] [Related]
15. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat. Ranjan M; Nayak S; Rao BS Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392 [TBL] [Abstract][Full Text] [Related]
16. Age-related changes of water-soluble proteins of human eye lens during the prenatal period. Trifonova NL; Alexiev C; Stamenova M; Goranov M Ophthalmic Res; 1993; 25(3):162-71. PubMed ID: 8336902 [TBL] [Abstract][Full Text] [Related]
17. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation. Kim I; Saito T; Fujii N; Kanamoto T; Chatake T; Fujii N Biochem Biophys Res Commun; 2015 Oct; 466(4):622-8. PubMed ID: 26385181 [TBL] [Abstract][Full Text] [Related]
18. Binding of dexamethasone by alpha-crystallin. Jobling AI; Stevens A; Augusteyn RC Invest Ophthalmol Vis Sci; 2001 Jul; 42(8):1829-32. PubMed ID: 11431449 [TBL] [Abstract][Full Text] [Related]
19. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
20. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]