These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37742882)

  • 41. Unified modeling of gene duplication, loss, and coalescence using a locus tree.
    Rasmussen MD; Kellis M
    Genome Res; 2012 Apr; 22(4):755-65. PubMed ID: 22271778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GIGA: a simple, efficient algorithm for gene tree inference in the genomic age.
    Thomas PD
    BMC Bioinformatics; 2010 Jun; 11():312. PubMed ID: 20534164
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Species Tree Inference Methods Intended to Deal with Incomplete Lineage Sorting Are Robust to the Presence of Paralogs.
    Yan Z; Smith ML; Du P; Hahn MW; Nakhleh L
    Syst Biol; 2022 Feb; 71(2):367-381. PubMed ID: 34245291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An ILP solution for the gene duplication problem.
    Chang WC; Burleigh GJ; Fernández-Baca DF; Eulenstein O
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S14. PubMed ID: 21342543
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inferring angiosperm phylogeny from EST data with widespread gene duplication.
    Sanderson MJ; McMahon MM
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S3. PubMed ID: 17288576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inference and characterization of horizontally transferred gene families using stochastic mapping.
    Cohen O; Pupko T
    Mol Biol Evol; 2010 Mar; 27(3):703-13. PubMed ID: 19808865
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New Approaches for Inferring Phylogenies in the Presence of Paralogs.
    Smith ML; Hahn MW
    Trends Genet; 2021 Feb; 37(2):174-187. PubMed ID: 32921510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reconstructing the evolutionary history of the oxytocin and vasotocin receptor gene family: Insights on whole genome duplication scenarios.
    Theofanopoulou C
    Dev Biol; 2021 Nov; 479():99-106. PubMed ID: 34329619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Evolutionary Fates of a Large Segmental Duplication in Mouse.
    Morgan AP; Holt JM; McMullan RC; Bell TA; Clayshulte AM; Didion JP; Yadgary L; Thybert D; Odom DT; Flicek P; McMillan L; de Villena FP
    Genetics; 2016 Sep; 204(1):267-85. PubMed ID: 27371833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications.
    Carretero-Paulet L; Fares MA
    Mol Biol Evol; 2012 Nov; 29(11):3541-51. PubMed ID: 22734049
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The duplication-loss small phylogeny problem: from cherries to trees.
    Andreotti S; Reinert K; Canzar S
    J Comput Biol; 2013 Sep; 20(9):643-59. PubMed ID: 24000925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 54. De Novo Gene Birth, Horizontal Gene Transfer, and Gene Duplication as Sources of New Gene Families Associated with the Origin of Symbiosis in Amanita.
    Wang YW; Hess J; Slot JC; Pringle A
    Genome Biol Evol; 2020 Nov; 12(11):2168-2182. PubMed ID: 32926145
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inferring gene family histories in yeast identifies lineage specific expansions.
    Ames RM; Money D; Lovell SC
    PLoS One; 2014; 9(6):e99480. PubMed ID: 24921666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species.
    Rogers J; Fishberg A; Youngs N; Wu YC
    BMC Bioinformatics; 2017 Jun; 18(1):292. PubMed ID: 28583091
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inferring duplication episodes from unrooted gene trees.
    Paszek J; Górecki P
    BMC Genomics; 2018 May; 19(Suppl 5):288. PubMed ID: 29745844
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies.
    Velandia-Huerto CA; Berkemer SJ; Hoffmann A; Retzlaff N; Romero Marroquín LC; Hernández-Rosales M; Stadler PF; Bermúdez-Santana CI
    BMC Genomics; 2016 Aug; 17(1):617. PubMed ID: 27515907
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TreeKO: a duplication-aware algorithm for the comparison of phylogenetic trees.
    Marcet-Houben M; Gabaldón T
    Nucleic Acids Res; 2011 May; 39(10):e66. PubMed ID: 21335609
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis.
    Lappin FM; Shaw RL; Macqueen DJ
    Mar Genomics; 2016 Dec; 30():15-26. PubMed ID: 27346185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.