BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37743016)

  • 1. Nanomedicine-induced programmed cell death enhances tumor immunotherapy.
    Lu J; Tai Z; Wu J; Li L; Zhang T; Liu J; Zhu Q; Chen Z
    J Adv Res; 2023 Sep; ():. PubMed ID: 37743016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmed cell death in tumor immunity: mechanistic insights and clinical implications.
    Wang M; Yu F; Zhang Y; Li P
    Front Immunol; 2023; 14():1309635. PubMed ID: 38283351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity.
    Li Y; Guo Y; Zhang K; Zhu R; Chen X; Zhang Z; Yang W
    Adv Sci (Weinh); 2024 Jan; 11(3):e2306580. PubMed ID: 37984863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed Cell Death Tunes Tumor Immunity.
    Liu J; Hong M; Li Y; Chen D; Wu Y; Hu Y
    Front Immunol; 2022; 13():847345. PubMed ID: 35432318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomedicine-induced cell pyroptosis to enhance antitumor immunotherapy.
    Ge J; Zhang Z; Zhao S; Chen Y; Min X; Cai Y; Zhao H; Wu X; Zhao F; Chen B
    J Mater Chem B; 2024 Apr; 12(16):3857-3880. PubMed ID: 38563315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomedicine-Enabled/Augmented Cell Pyroptosis for Efficient Tumor Nanotherapy.
    Zhang Z; Zhou Y; Zhao S; Ding L; Chen B; Chen Y
    Adv Sci (Weinh); 2022 Dec; 9(35):e2203583. PubMed ID: 36266982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An acid-responsive MOF nanomedicine for augmented anti-tumor immunotherapy via a metal ion interference-mediated pyroptotic pathway.
    Feng Z; Chen G; Zhong M; Lin L; Mai Z; Tang Y; Chen G; Ma W; Li G; Yang Y; Yu Z; Yu M
    Biomaterials; 2023 Nov; 302():122333. PubMed ID: 37738743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomedicine-mediated regulated cell death in cancer immunotherapy.
    Sun Y; Lian T; Huang Q; Chang Y; Li Y; Guo X; Kong W; Yang Y; Zhang K; Wang P; Wang X
    J Control Release; 2023 Dec; 364():174-194. PubMed ID: 37871752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrelation between Programmed Cell Death and Immunogenic Cell Death: Take Antitumor Nanodrug as an Example.
    Meng Q; Ding B; Ma P; Lin J
    Small Methods; 2023 May; 7(5):e2201406. PubMed ID: 36707416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns.
    Wei Q; Jiang X; Miao X; Zhang Y; Chen F; Zhang P
    J Cancer Res Clin Oncol; 2023 Oct; 149(13):11351-11368. PubMed ID: 37378675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomedicine-mediated ferroptosis targeting strategies for synergistic cancer therapy.
    Yin W; Chang J; Sun J; Zhang T; Zhao Y; Li Y; Dong H
    J Mater Chem B; 2023 Feb; 11(6):1171-1190. PubMed ID: 36650960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of programmed cell death by Brd4.
    Hu J; Pan D; Li G; Chen K; Hu X
    Cell Death Dis; 2022 Dec; 13(12):1059. PubMed ID: 36539410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosstalk of three novel types of programmed cell death defines distinct microenvironment characterization and pharmacogenomic landscape in breast cancer.
    Xu L
    Front Immunol; 2022; 13():942765. PubMed ID: 36032140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance.
    Liu T; Zhu C; Chen X; Guan G; Zou C; Shen S; Wu J; Wang Y; Lin Z; Chen L; Cheng P; Cheng W; Wu A
    Neuro Oncol; 2022 Jul; 24(7):1113-1125. PubMed ID: 35148413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel insights into the interplay between m6A modification and programmed cell death in cancer.
    Chen J; Ye M; Bai J; Hu C; Lu F; Gu D; Yu P; Tang Q
    Int J Biol Sci; 2023; 19(6):1748-1763. PubMed ID: 37063421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomedicine-based tumor photothermal therapy synergized immunotherapy.
    Shang T; Yu X; Han S; Yang B
    Biomater Sci; 2020 Oct; 8(19):5241-5259. PubMed ID: 32996922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterials Enhance Pyroptosis-Based Tumor Immunotherapy.
    Ji F; Shi C; Shu Z; Li Z
    Int J Nanomedicine; 2024; 19():5545-5579. PubMed ID: 38882539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor-Targeted Nanomedicine for Immunotherapy.
    Cabral H; Kinoh H; Kataoka K
    Acc Chem Res; 2020 Dec; 53(12):2765-2776. PubMed ID: 33161717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.