BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37743362)

  • 1. Preventing water-inrush from floor in coal working face with paste-like backfill technology.
    Qu X; Shi L; Han J
    Sci Rep; 2023 Sep; 13(1):15947. PubMed ID: 37743362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise application of grouting technology in underground coal mining: water inrush risk of floor elimination.
    Zhai M; Bai H
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24361-24376. PubMed ID: 36342607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-inrush mechanism from the head-on working face roof in a Jurassic coal seam in the Ordos Basin.
    Shi L; Qu X; Qiu M; Han J; Zhang W
    PLoS One; 2024; 19(3):e0298399. PubMed ID: 38470875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing.
    Yu R; Qian J; Liu L; Zha H; Li N
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gray Evaluation of Water Inrush Risk in Deep Mining Floor.
    Qu X; Yu X; Qu X; Qiu M; Gao W
    ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar.
    Ma D; Wang J; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technology and engineering test of filling goaf with coal gangue slurry.
    Xie S; Pan H; Gu W; Zhu L; Yue D; Chen D; Song T; Jiang Z
    Sci Rep; 2023 Nov; 13(1):20536. PubMed ID: 37996503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preventing water inrush hazards in coal mines by coal gangue backfilling in gobs: influences of the particle size and stress on seepage characteristics.
    Guo Y; Zhang J; Li M; Wang L; Li Z
    Environ Sci Pollut Res Int; 2023 Oct; 30(47):104374-104387. PubMed ID: 37700127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport mechanism and control technology of heavy metal ions in gangue backfill materials in short-wall block backfill mining.
    Zhang Y; Liu Y; Lai X; Cao S; Yang Y; Yan B; Bai L; Tong L; He W
    Sci Total Environ; 2023 Oct; 895():165139. PubMed ID: 37379916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of width-height ratio and roof-floor strength on the mechanical characteristics of cemented gangue backfill pier-column.
    Ran H; Elchalakani M; Guo Y; Feng G; Yang B
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):6313-6344. PubMed ID: 35994151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control effect of coal mining solid-waste backfill for ground surface movement in slice mining: a case study of the Nantun Coal Mine.
    Zhu C; Zhang J; Taheri A; Zhou N; Li Z; Li M
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27270-27288. PubMed ID: 36380178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mine Water Inrush Risk Assessment Evaluation Based on the GIS and Combination Weight-Cloud Model: A Case Study.
    Liu W; Han M; Meng X; Qin Y
    ACS Omega; 2021 Dec; 6(48):32671-32681. PubMed ID: 34901616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on long-term migration behaviors of heavy metals after close-distance coal seam backfill mining.
    Li J; Huang Y; Li Y; Ouyang S; Wang S; Ding Z
    J Hazard Mater; 2024 May; 470():134140. PubMed ID: 38574658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development overview of paste backfill technology in China's coal mines: a review.
    Yang K; Zhao X; Wei Z; Zhang J
    Environ Sci Pollut Res Int; 2021 Dec; 28(48):67957-67969. PubMed ID: 34637124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Risk assessment of coal mine water inrush based on PCA-DBN.
    Zhang Y; Tang S; Shi K
    Sci Rep; 2022 Jan; 12(1):1370. PubMed ID: 35079120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multifactor Quantitative Assessment Model for Safe Mining after Roof Drainage in the Liangshuijing Coal Mine.
    Gao C; Wang D; Liu K; Deng G; Li J; Jie B
    ACS Omega; 2022 Aug; 7(30):26437-26454. PubMed ID: 35936470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on mechanical properties of coal gangue and fly ash mixture as backfill material based on fractal characteristics.
    Li W; Yue L; Liu Y; Li S; Ma L; Wang J
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):111936-111946. PubMed ID: 37821737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive study on identification of water inrush sources from deep mining roadway.
    Chen Y; Tang L; Zhu S
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19608-19623. PubMed ID: 34718973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rock Damage Model Coupled Stress-Seepage and Its Application in Water Inrush from Faults in Coal Mines.
    Shao J; Zhang W; Wu X; Lei Y; Wu X
    ACS Omega; 2022 Apr; 7(16):13604-13614. PubMed ID: 35559151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.