These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 37743428)
1. Improving the accuracy of the FMO binding affinity prediction of ligand-receptor complexes containing metals. Paciotti R; Marrone A; Coletti C; Re N J Comput Aided Mol Des; 2023 Dec; 37(12):707-719. PubMed ID: 37743428 [TBL] [Abstract][Full Text] [Related]
2. The FMO2 analysis of the ligand-receptor binding energy: the Biscarbene-Gold(I)/DNA G-Quadruplex case study. Paciotti R; Coletti C; Marrone A; Re N J Comput Aided Mol Des; 2022 Dec; 36(12):851-866. PubMed ID: 36318393 [TBL] [Abstract][Full Text] [Related]
3. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method. Otsuka T; Okimoto N; Taiji M J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829 [TBL] [Abstract][Full Text] [Related]
4. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. Mazanetz MP; Ichihara O; Law RJ; Whittaker M J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630 [TBL] [Abstract][Full Text] [Related]
5. System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study. Nakamura S; Akaki T; Nishiwaki K; Nakatani M; Kawase Y; Takahashi Y; Nakanishi I J Comput Chem; 2023 Mar; 44(7):824-831. PubMed ID: 36444861 [TBL] [Abstract][Full Text] [Related]
6. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study. Nakanishi I; Fedorov DG; Kitaura K Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719 [TBL] [Abstract][Full Text] [Related]
7. Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors. Yuan Z; Chen X; Fan S; Chang L; Chu L; Zhang Y; Wang J; Li S; Xie J; Hu J; Miao R; Zhu L; Zhao Z; Li H; Li S Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203841 [TBL] [Abstract][Full Text] [Related]
8. Fragment Molecular Orbital Based Affinity Prediction toward Pyruvate Dehydrogenase Kinases: Insights into the Charge Transfer in Hydrogen Bond Networks. Akaki T; Nakamura S; Nishiwaki K; Nakanishi I Chem Pharm Bull (Tokyo); 2023 Apr; 71(4):299-306. PubMed ID: 36724968 [TBL] [Abstract][Full Text] [Related]
9. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
10. Estimates of ligand-binding affinities supported by quantum mechanical methods. Söderhjelm P; Kongsted J; Genheden S; Ryde U Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794 [TBL] [Abstract][Full Text] [Related]
11. Fragment quantum mechanical calculation of proteins and its applications. He X; Zhu T; Wang X; Liu J; Zhang JZ Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673 [TBL] [Abstract][Full Text] [Related]
12. Change in a protein's electronic structure induced by an explicit solvent: an ab initio fragment molecular orbital study of ubiquitin. Komeiji Y; Ishida T; Fedorov DG; Kitaura K J Comput Chem; 2007 Jul; 28(10):1750-62. PubMed ID: 17340606 [TBL] [Abstract][Full Text] [Related]
13. Molecular tailoring approach in conjunction with MP2 and Ri-MP2 codes: A comparison with fragment molecular orbital method. Rahalkar AP; Katouda M; Gadre SR; Nagase S J Comput Chem; 2010 Oct; 31(13):2405-18. PubMed ID: 20652984 [TBL] [Abstract][Full Text] [Related]
14. Protein-ligand interaction energies with dispersion corrected density functional theory and high-level wave function based methods. Antony J; Grimme S; Liakos DG; Neese F J Phys Chem A; 2011 Oct; 115(41):11210-20. PubMed ID: 21842894 [TBL] [Abstract][Full Text] [Related]
15. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. Fedorov DG; Ishida T; Uebayasi M; Kitaura K J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363 [TBL] [Abstract][Full Text] [Related]
16. RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method. Ishikawa T; Kuwata K J Phys Chem Lett; 2012 Feb; 3(3):375-9. PubMed ID: 26285854 [TBL] [Abstract][Full Text] [Related]
17. Characteristics and properties of metal-to-ligand charge-transfer excited states in 2,3-bis(2-pyridyl)pyrazine and 2,2'-bypyridine ruthenium complexes. Perturbation-theory-based correlations of optical absorption and emission parameters with electrochemistry and thermal kinetics and related Ab initio calculations. Seneviratne DS; Uddin J; Swayambunathan V; Schlegel HB; Endicott JF Inorg Chem; 2002 Mar; 41(6):1502-17. PubMed ID: 11896719 [TBL] [Abstract][Full Text] [Related]
18. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications. Nagata T; Fedorov DG; Kitaura K; Gordon MS J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964 [TBL] [Abstract][Full Text] [Related]
19. Affinity of HIV-1 antibody 2G12 with monosaccharides: a theoretical study based on explicit and implicit water models. Koyama Y; Ueno-Noto K; Takano K Comput Biol Chem; 2014 Apr; 49():36-44. PubMed ID: 24583603 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study of pyridine and 4,4'-bipyridine adsorption on the lewis acid sites of alumina surfaces based on ab initio and density functional cluster calculations. Kassab E; Castellà-Ventura M J Phys Chem B; 2005 Jul; 109(28):13716-28. PubMed ID: 16852719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]