These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37743431)

  • 1. The histidine kinases regulate allyl-isothiocyanate sensitivity in Cochliobolus heterostrophus.
    Jia W; Yu H; Fan J; Zhang J; Pan H; Zhang X
    Pest Manag Sci; 2024 Feb; 80(2):463-472. PubMed ID: 37743431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crucial Roles of the High-Osmolarity Glycerol Pathway in the Antifungal Activity of Isothiocyanates against
    Jia W; Yu H; Fan J; Zhang J; Su L; Li D; Pan H; Zhang X
    J Agric Food Chem; 2023 Oct; 71(42):15466-15475. PubMed ID: 37877171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae.
    Oide S; Liu J; Yun SH; Wu D; Michev A; Choi MY; Horwitz BA; Turgeon BG
    Eukaryot Cell; 2010 Dec; 9(12):1867-80. PubMed ID: 21037181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infection-specific transcriptional patterns of the maize pathogen Cochliobolus heterostrophus unravel genes involved in asexual development and virulence.
    Yu H; Zhang J; Fan J; Jia W; Lv Y; Pan H; Zhang X
    Mol Plant Pathol; 2024 Jan; 25(1):e13413. PubMed ID: 38279855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal mechanism of isothiocyanates against Cochliobolus heterostrophus.
    Yu H; Jia W; Zhao M; Li L; Liu J; Chen J; Pan H; Zhang X
    Pest Manag Sci; 2022 Dec; 78(12):5133-5141. PubMed ID: 36053944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Mechanism Underlying Pathogenicity Inhibition by Chitosan in
    Yu H; Su L; Jia W; Jia M; Pan H; Zhang X
    J Agric Food Chem; 2024 Feb; 72(8):3926-3936. PubMed ID: 38365616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus.
    Izumitsu K; Yoshimi A; Tanaka C
    Eukaryot Cell; 2007 Feb; 6(2):171-81. PubMed ID: 17158737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Autophagy Genes
    Yu H; Jia W; Xiao K; Jiao W; Zhang X; Pan H
    Phytopathology; 2022 Apr; 112(4):830-841. PubMed ID: 34664975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates  maize defenses.
    Ahmad I; Jiménez-Gasco MDM; Luthe DS; Barbercheck ME
    PLoS One; 2022; 17(9):e0272944. PubMed ID: 36137142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize.
    Lu S; Gillian Turgeon B; Edwards MC
    Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Six new genes required for production of T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize.
    Inderbitzin P; Asvarak T; Turgeon BG
    Mol Plant Microbe Interact; 2010 Apr; 23(4):458-72. PubMed ID: 20192833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi.
    Yoshimi A; Kojima K; Takano Y; Tanaka C
    Eukaryot Cell; 2005 Nov; 4(11):1820-8. PubMed ID: 16278449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of the histidine kinase gene Dic1 from Cochliobolus heterostrophus that confers dicarboximide resistance and osmotic adaptation.
    Yoshimi A; Tsuda M; Tanaka C
    Mol Genet Genomics; 2004 Mar; 271(2):228-36. PubMed ID: 14752661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic.
    Simaan H; Shalaby S; Hatoel M; Karinski O; Goldshmidt-Tran O; Horwitz BA
    Curr Genet; 2020 Feb; 66(1):187-203. PubMed ID: 31312934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses.
    Igbaria A; Lev S; Rose MS; Lee BN; Hadar R; Degani O; Horwitz BA
    Mol Plant Microbe Interact; 2008 Jun; 21(6):769-80. PubMed ID: 18473669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance risk assessment for fludioxonil in Bipolaris maydis.
    Han X; Zhao H; Ren W; Lv C; Chen C
    Pestic Biochem Physiol; 2017 Jun; 139():32-39. PubMed ID: 28595919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper Ions are Required for
    Zhang Y; Zhang Y; Yu D; Peng Y; Min H; Lai Z
    Phytopathology; 2020 Feb; 110(2):494-504. PubMed ID: 31464158
    [No Abstract]   [Full Text] [Related]  

  • 18. Iron, oxidative stress, and virulence: roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus.
    Zhang N; MohdZainudin NA; Scher K; Condon BJ; Horwitz BA; Turgeon BG
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1473-85. PubMed ID: 23980626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-genome analysis of two-component signal transduction genes in fungal pathogens.
    Catlett NL; Yoder OC; Turgeon BG
    Eukaryot Cell; 2003 Dec; 2(6):1151-61. PubMed ID: 14665450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens.
    Lev S; Sharon A; Hadar R; Ma H; Horwitz BA
    Proc Natl Acad Sci U S A; 1999 Nov; 96(23):13542-7. PubMed ID: 10557357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.