These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37743537)

  • 1. Contrast-enhanced CT-based radiomic analysis for determining the response to anti-programmed death-1 therapy in esophageal squamous cell carcinoma patients: A pilot study.
    Yang Q; Huang H; Zhang G; Weng N; Ou Z; Sun M; Luo H; Zhou X; Gao Y; Wu X
    Thorac Cancer; 2023 Nov; 14(33):3266-3274. PubMed ID: 37743537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CT radiomic features for predicting resectability of oesophageal squamous cell carcinoma as given by feature analysis: a case control study.
    Ou J; Li R; Zeng R; Wu CQ; Chen Y; Chen TW; Zhang XM; Wu L; Jiang Y; Yang JQ; Cao JM; Tang S; Tang MJ; Hu J
    Cancer Imaging; 2019 Oct; 19(1):66. PubMed ID: 31619297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CT-based radiomic signatures for prediction of pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy.
    Yang Z; He B; Zhuang X; Gao X; Wang D; Li M; Lin Z; Luo R
    J Radiat Res; 2019 Jul; 60(4):538-545. PubMed ID: 31111948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma.
    Wang JL; Tang LS; Zhong X; Wang Y; Feng YJ; Zhang Y; Liu JY
    Front Immunol; 2024; 15():1405146. PubMed ID: 38947338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CT radiomics features of meso-esophageal fat in predicting overall survival of patients with locally advanced esophageal squamous cell carcinoma treated by definitive chemoradiotherapy.
    Yan S; Li FP; Jian L; Zhu HT; Zhao B; Li XT; Shi YJ; Sun YS
    BMC Cancer; 2023 May; 23(1):477. PubMed ID: 37231388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer.
    Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH
    Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrast-enhanced CT radiomics features to preoperatively identify differences between tumor and proximal tumor-adjacent and tumor-distant tissues of resectable esophageal squamous cell carcinoma.
    Gao D; Tan BG; Chen XQ; Zhou C; Ou J; Guo WW; Zhou HY; Li R; Zhang XM; Chen TW
    Cancer Imaging; 2024 Jan; 24(1):11. PubMed ID: 38243339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting response to immunotherapy plus chemotherapy in patients with esophageal squamous cell carcinoma using non-invasive Radiomic biomarkers.
    Zhu Y; Yao W; Xu BC; Lei YY; Guo QK; Liu LZ; Li HJ; Xu M; Yan J; Chang DD; Feng ST; Zhu ZH
    BMC Cancer; 2021 Oct; 21(1):1167. PubMed ID: 34717582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of lymphovascular invasion in esophageal squamous cell carcinoma by computed tomography-based radiomics analysis: 2D or 3D ?
    Li Y; Gu X; Yang L; Wang X; Wang Q; Xu X; Zhang A; Yue M; Wang M; Cong M; Ren J; Ren W; Shi G
    Cancer Imaging; 2024 Oct; 24(1):141. PubMed ID: 39420415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computed tomography-based radiomics analysis to predict lymphovascular invasion in esophageal squamous cell carcinoma.
    Peng H; Yang Q; Xue T; Chen Q; Li M; Duan S; Cai B; Feng F
    Br J Radiol; 2022 Feb; 95(1130):20210918. PubMed ID: 34908477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computed tomography-based radiomic analysis for prediction of treatment response to salvage chemoradiotherapy for locoregional lymph node recurrence after curative esophagectomy.
    Gu L; Liu Y; Guo X; Tian Y; Ye H; Zhou S; Gao F
    J Appl Clin Med Phys; 2021 Nov; 22(11):71-79. PubMed ID: 34614265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using clinical and radiomic feature-based machine learning models to predict pathological complete response in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiation.
    Wang J; Zhu X; Zeng J; Liu C; Shen W; Sun X; Lin Q; Fang J; Chen Q; Ji Y
    Eur Radiol; 2023 Dec; 33(12):8554-8563. PubMed ID: 37439939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preoperative CT radiomics of esophageal squamous cell carcinoma and lymph node to predict nodal disease with a high diagnostic capability.
    Wu YP; Wu L; Ou J; Cao JM; Fu MY; Chen TW; Ouchi E; Hu J
    Eur J Radiol; 2024 Jan; 170():111197. PubMed ID: 37992611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preoperative Prediction of Perineural Invasion in Oesophageal Squamous Cell Carcinoma Based on CT Radiomics Nomogram: A Multicenter Study.
    Zhou H; Zhou J; Qin C; Tian Q; Zhou S; Qin Y; Wu Y; Shi J; Feng F
    Acad Radiol; 2024 Apr; 31(4):1355-1366. PubMed ID: 37949700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrast-Enhanced CT-Based Radiomics Analysis in Predicting Lymphovascular Invasion in Esophageal Squamous Cell Carcinoma.
    Li Y; Yu M; Wang G; Yang L; Ma C; Wang M; Yue M; Cong M; Ren J; Shi G
    Front Oncol; 2021; 11():644165. PubMed ID: 34055613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of spleen radiomics model for predicting prognosis in esophageal squamous cell carcinoma patients receiving definitive radiotherapy.
    Guo L; Liu A; Geng X; Zhao Z; Nie Y; Wang L; Liu D; Li Y; Li Y; Li D; Wang Q; Li Z; Liu X; Li M
    Thorac Cancer; 2024 Apr; 15(12):947-964. PubMed ID: 38480505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing a survival prediction model for esophageal squamous cell carcinoma based on CT and histopathological images.
    Wang J; Wu LL; Zhang Y; Ma G; Lu Y
    Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34192686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A radiomics nomogram based on contrast-enhanced CT for preoperative prediction of Lymphovascular invasion in esophageal squamous cell carcinoma.
    Wang Y; Bai G; Huang W; Zhang H; Chen W
    Front Oncol; 2023; 13():1208756. PubMed ID: 37465108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning approach using
    Qi WX; Li S; Xiao J; Li H; Chen J; Zhao S
    Front Immunol; 2024; 15():1351750. PubMed ID: 38352868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics Analysis of Lymph Nodes with Esophageal Squamous Cell Carcinoma Based on Deep Learning.
    Chen L; Ouyang Y; Liu S; Lin J; Chen C; Zheng C; Lin J; Hu Z; Qiu M
    J Oncol; 2022; 2022():8534262. PubMed ID: 36147442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.