BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37743659)

  • 1. Characterization of CoCas9 nuclease from
    Vasileva A; Selkova P; Arseniev A; Abramova M; Shcheglova N; Musharova O; Mizgirev I; Artamonova T; Khodorkovskii M; Severinov K; Fedorova I
    RNA Biol; 2023 Jan; 20(1):750-759. PubMed ID: 37743659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CoCas9 is a compact nuclease from the human microbiome for efficient and precise genome editing.
    Pedrazzoli E; Demozzi M; Visentin E; Ciciani M; Bonuzzi I; Pezzè L; Lucchetta L; Maule G; Amistadi S; Esposito F; Lupo M; Miccio A; Auricchio A; Casini A; Segata N; Cereseto A
    Nat Commun; 2024 Apr; 15(1):3478. PubMed ID: 38658578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Type II CRISPR-Cas System Nucleases: A Pipeline for Prediction and In Vitro Characterization].
    Vasileva AA; Aliukas SA; Selkova PA; Arseniev AN; Chernova VE; Musharova OS; Klimuk EI; Khodorkovskii MA; Severinov KV
    Mol Biol (Mosk); 2023; 57(3):546-560. PubMed ID: 37326060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR technologies and the search for the PAM-free nuclease.
    Collias D; Beisel CL
    Nat Commun; 2021 Jan; 12(1):555. PubMed ID: 33483498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery and Characterization of Novel Type V Cas12f Nucleases with Diverse Protospacer Adjacent Motif Preferences.
    Sharrar A; Arake de Tacca L; Collingwood T; Meacham Z; Rabuka D; Staples-Ager J; Schelle M
    CRISPR J; 2023 Aug; 6(4):350-358. PubMed ID: 37267210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo.
    Ibraheim R; Song CQ; Mir A; Amrani N; Xue W; Sontheimer EJ
    Genome Biol; 2018 Sep; 19(1):137. PubMed ID: 30231914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the EH CRISPR-Cas9 system on a metagenome and its application to genome engineering.
    Esquerra-Ruvira B; Baquedano I; Ruiz R; Fernandez A; Montoliu L; Mojica FJM
    Microb Biotechnol; 2023 Jul; 16(7):1505-1523. PubMed ID: 37097160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Improving Gene-Editing Specificity through CRISPR-Cas9 Nuclease Engineering.
    Huang X; Yang D; Zhang J; Xu J; Chen YE
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data.
    Ciciani M; Demozzi M; Pedrazzoli E; Visentin E; Pezzè L; Signorini LF; Blanco-Miguez A; Zolfo M; Asnicar F; Casini A; Cereseto A; Segata N
    Nat Commun; 2022 Oct; 13(1):6474. PubMed ID: 36309502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closely related type II-C Cas9 orthologs recognize diverse PAMs.
    Wei J; Hou L; Liu J; Wang Z; Gao S; Qi T; Gao S; Sun S; Wang Y
    Elife; 2022 Aug; 11():. PubMed ID: 35959889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 13. Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility.
    Schmidheini L; Mathis N; Marquart KF; Rothgangl T; Kissling L; Böck D; Chanez C; Wang JP; Jinek M; Schwank G
    Nat Chem Biol; 2024 Mar; 20(3):333-343. PubMed ID: 37735239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal PAM specificity of a highly similar SpCas9 ortholog.
    Chatterjee P; Jakimo N; Jacobson JM
    Sci Adv; 2018 Oct; 4(10):eaau0766. PubMed ID: 30397647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas gene therapy.
    Zhang B
    J Cell Physiol; 2021 Apr; 236(4):2459-2481. PubMed ID: 32959897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9.
    Dugar G; Leenay RT; Eisenbart SK; Bischler T; Aul BU; Beisel CL; Sharma CM
    Mol Cell; 2018 Mar; 69(5):893-905.e7. PubMed ID: 29499139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a Type II-A CRISPR-Cas System in
    Mosterd C; Moineau S
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32581075
    [No Abstract]   [Full Text] [Related]  

  • 19. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recruitment of DNA Repair MRN Complex by Intrinsically Disordered Protein Domain Fused to Cas9 Improves Efficiency of CRISPR-Mediated Genome Editing.
    Reuven N; Adler J; Broennimann K; Myers N; Shaul Y
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.