BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37743712)

  • 1. Interfacial dipole engineering in all-inorganic perovskite solar cells.
    Gao K; Gao L; Wang Q; Chang Y; Zhang Q; Zhao Y; Tang Q
    Chem Commun (Camb); 2023 Oct; 59(81):12112-12115. PubMed ID: 37743712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensionality Control of SnO
    Zhao Y; Zhu J; He B; Tang Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11058-11066. PubMed ID: 33634693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface Engineering of Imidazolium Ionic Liquids toward Efficient and Stable CsPbBr
    Zhang W; Liu X; He B; Gong Z; Zhu J; Ding Y; Chen H; Tang Q
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4540-4548. PubMed ID: 31904210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grain Enlargement and Defect Passivation with Melamine Additives for High Efficiency and Stable CsPbBr
    Zhu J; He B; Gong Z; Ding Y; Zhang W; Li X; Zong Z; Chen H; Tang Q
    ChemSusChem; 2020 Apr; 13(7):1834-1843. PubMed ID: 31971332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Dipole poly(2-ethyl-2-oxazoline) Modification Triggers Simultaneous Band Alignment and Passivation for Air-Stable Perovskite Solar Cells.
    Xi H; Song Z; Guo Y; Zhu W; Ding L; Zhu W; Chen D; Zhang C
    Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Passivation Engineering for Highly Efficient Perovskite Solar Cells with a Fill Factor over 83.
    Ji X; Feng K; Ma S; Wang J; Liao Q; Wang Z; Li B; Huang J; Sun H; Wang K; Guo X
    ACS Nano; 2022 Aug; 16(8):11902-11911. PubMed ID: 35866886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eliminating Charge Accumulation via Interfacial Dipole for Efficient and Stable Perovskite Solar Cells.
    Yang Y; Liu C; Ding Y; Arain Z; Wang S; Liu X; Hayat T; Alsaedi A; Dai S
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34964-34972. PubMed ID: 31482702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface Modification for Efficient and Stable Inverted Inorganic Perovskite Solar Cells.
    Xu T; Xiang W; Yang J; Kubicki DJ; Tress W; Chen T; Fang Z; Liu Y; Liu S
    Adv Mater; 2023 Aug; 35(31):e2303346. PubMed ID: 37279373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells.
    Du B; He K; Zhao X; Li B
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SnO
    Guan N; Ran C; Wang Y; Chao L; Deng Z; Wu G; Dong H; Bao Y; Lin Z; Song L
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34198-34207. PubMed ID: 34870979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-Inorganic CsPbBr
    Li X; Tan Y; Lai H; Li S; Chen Y; Li S; Xu P; Yang J
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29746-29752. PubMed ID: 31361115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic Monomolecular Layers Enable Energy-Level Matching for Efficient Hole Transporting Layer Free Inverted Perovskite Solar Cells.
    Kong W; Li W; Liu C; Liu H; Miao J; Wang W; Chen S; Hu M; Li D; Amini A; Yang S; Wang J; Xu B; Cheng C
    ACS Nano; 2019 Feb; 13(2):1625-1634. PubMed ID: 30673271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Role of Functional Groups in Defect Passivation and Energy Band Modulation in Efficient and Stable Inverted Perovskite Solar Cells Exceeding 21% Efficiency.
    Zheng J; Chen J; Ouyang D; Huang Z; He X; Kim J; Choy WCH
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57165-57173. PubMed ID: 33296167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules.
    Xin D; Tie S; Yuan R; Zheng X; Zhu J; Zhang WH
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44233-44240. PubMed ID: 31696708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells.
    Gu X; Xiang W; Tian Q; Liu SF
    Angew Chem Int Ed Engl; 2021 Oct; 60(43):23164-23170. PubMed ID: 34405503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Control of Cs-Pb-Br Derivatives to Suppress 0D Cs
    Zhu J; He B; Yao X; Chen H; Duan Y; Duan J; Tang Q
    Small; 2022 Feb; 18(8):e2106323. PubMed ID: 34898006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Interfacial Modification and Defect Passivation for Wide-Bandgap Semitransparent Perovskite Solar Cells with 14.4% Power Conversion Efficiency and 38% Average Visible Transmittance.
    Shi H; Zhang L; Huang H; Wang X; Li Z; Xuan D; Wang C; Ou Y; Ni C; Li D; Chi D; Huang S
    Small; 2022 Aug; 18(31):e2202144. PubMed ID: 35802913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous Internal Encapsulation via Dual Interfacial Perovskite Heterojunction Enables Highly Efficient and Stable Perovskite Solar Cells.
    Li D; Xing Z; Meng X; Hu X; Hu T; Chen Y
    Nano Lett; 2023 Apr; 23(8):3484-3492. PubMed ID: 37039582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect of alkali metal doping and thiocyanate passivation in CsPbBr
    Jiang S; Sui H; He B; Zhang X; Zong Z; Chen H; Tang Q
    Dalton Trans; 2023 Jul; 52(28):9772-9779. PubMed ID: 37395456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkyl Chains Tune Molecular Orientations to Enable Dual Passivation in Inverted Perovskite Solar Cells.
    Liu J; Chen J; Xie L; Yang S; Meng Y; Li M; Xiao C; Zhu J; Do H; Zhang J; Yang M; Ge Z
    Angew Chem Int Ed Engl; 2024 May; ():e202403610. PubMed ID: 38721714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.